In this study, the effect of deep ocean condenser inlet temperature ($T_{DOI}$), condenser inlet pressure ($P_{cond,in}$), and thermal diffusivity on system efficiency of some selected refrigerants was analyzed using HYSYS. The proposed DOTEC cycle is similar to the reheat Rankine cycle but eliminates irreversibilities by bleeding a fraction of the steam between certain stages of the turbine. The evaporator inlet mass flow rate, inlet temperature of turbine 1, turbine efficiency and inlet and outlet temperature of heat source were imposed. The working fluids considered are sorted in ascending order of their molecular weights as R717, R600a and R152a. Results indicated that a fluid with a lower boiling point temperature like R717 needs a corresponding high heat source and/or evaporator inlet pressure. Also, the response of thermal diffusivity closely follows the change in TDOI as an increase in $T_{DOI}$ increases $P_{cond,in}$ which reduces thermal diffusivity and system efficiency. Furthermore, the fluid with the nominal boiling point temperature has the highest efficiency with efficiency decreasing with an increase in TDOI.
Pressure compensating temperature control valve(TCV) is one of the important control devices, which is used to maintain the constant temperature of working fluid in power and chemical plants. The ratio of cylinder hole diameters of inlet and outlet is the main design parameters of TCV. So this needs to be investigated to improve the function of control of temperature and void fraction. In this study, numerical analysis is carried out with various ratios of cylinder hole diameters of the inlet and outlet in the TCV. Especial1y, the distribution of the static pressure Is investigated to calculate the new coefficient($C_{\upsilon}$) and resistance coefficient(K). The governing equations are derived from making using of three-dimensional Naver-Stokes equations with standard $k-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, PHOENICS, pressure and flow fields in TCV are calculated with different inlet and outlet diameters of the cylinder hole for cold and hot water passages.
Jeung Jae Yeal;Kang Sung Ho;Kim Sam Tae;Lee Eun Kyoung;Song Young Sun;Lee Ki Nam
Journal of Physiology & Pathology in Korean Medicine
/
v.17
no.2
/
pp.518-524
/
2003
Ultrasonic nebulizer with the application of new engineering methodology and the design of electronic circuit was made for lead inhalation toxicology study and 2730ppm lead nebulizing solution was used to generate lead aerosol. After modification of source and inlet temperatures, the results of particle size analysis for lead aerosol were as following. The highest particle counting for source temperature 20℃ was 39933.66 in inlet temperature 100℃ and particle diameter 0.75tLm. The highest particle counting for source temperature 50℃ was 39992.71 in inlet temperature 250℃ and particle diameter 0.75μm. The highest particle counting for source temperature 70℃ was 37569.55 in inlet temperature 50℃ and particle diameter 0.75μm. The ranges of geometric mean diameter(GMD) were 0.754-0.784μm for source temperature 2℃, 0.758-0.852μm for source temperature 50℃, and 0.869-1.060μm for source temperature 70℃. The smallest GMD was 0.754μm in source temperature 20℃ and inlet temperature 20℃, and the largest GMD was 1.060μm in source temperature 70℃ and inlet temperature 250℃. The ranges of geometric standard deviation(GSD) were 1.730-1.782 for source temperature 20℃, 1.734-1.894 for source temperature 50℃, and 1.921-2.148 for source temperature 70℃. The lowest GSD was 1.730 in source temperature 20℃ and inlet temperature 20℃, and the highest GSD was 2.148 in source temperature 70℃ and inlet temperature 250℃. Lead aerosol generated in this study was polydisperse. The ranges of mass median diameter(MMD) were 1.856-2.133μm for source temperature 20℃, 1.877-2.894μm for source temperature 50℃, and 3.120-6.109μm for source temperature 70℃. The smallest MMD was 1.856μm in source temperature 20℃ and inlet temperature 20℃, and the largest MMD was 6.109μm in source temperature 70℃ and inlet temperature 250℃. Slight increases for GMD, GSD, and MMD values were observed with same source temperature and increase of inlet temperature. MMD for inhalation toxicology testing in EPA guidance is less than 4μm. In this study, source temperature 20℃ and 50℃ with inlet temperature from 20℃ to 250℃ were conformed to the EPA guidance, but inlet temperature 20℃ and 50℃ for source temperature 70℃ were conformed EPA guidance. MMD for inhalation toxicology testing in OECD and EU is less than 3μm. In this study, source temperature 20℃ and 50℃ with inlet temperature from 20℃ to 250℃ were conformed to the EPA guidance, but none for source temperature 70℃.
The CO reduction characteristics of hot air stream diluted with exhaust gas in a perfectly stirred reactor (PSR) were investigated numerically. The dilution ratio ($\Omega$), inlet temperature ($T_{in}$), and residence time ($\tau$) were considered as parameters to investigate the effects of those on the emission indices for CO and $CO_2$ (EICO and $EICO_2$). The roles of dominant reactions and the production rates of major species were analyzed. It was found from the EICO trend that the supplied CO in the air stream was consumed. The EICO increased negatively with $T_{in}$ at fixed $\tau$ regardless of $\Omega$. However, the magnitude of EICO and minimum inlet temperature for CO reduction showed complicated trend according to the variation of $\tau$. It was identified that the OH radical, generated from the reactions, $O_2+H{\leftrightarrow}O+OH$ and $2OH{\leftrightarrow}H+H_2O$, affected the CO reduction by the reaction, $CO+OH{\leftrightarrow}H+CO_2$. However, the CO emission ratio increased at sufficiently high inlet temperature range due to the thermal dissociation of $CO_2$.
This paper deals with experimental research to increase thermal storage efficiency of hot water stored in an actual storage tank for solar application. The effect of increased energy input rate due to stratification has been discussed and illustrated through experimental data, which was taken by changing dynamic and geometric parameters. Ranges of the parameters were defined for flow rate, the ratio of diameter to height of the tank and inlet-exit water temperature difference. During the heat storage, when the flow was lower, the temperature difference was larger and the ratio of diameter to height of the tank was higher, the momentum exchange decreased. As for this experiment, when the flow rate was 8 liter/min, the temperature difference was $30^{\circ}C$ and the ratio of diameter to height of the tank was 3, the momentum exchange was minimized resulting in a good thermocline and a stable stratification. In the case of using inlet ports, if the modified Richardson number was less than 0.004, full mixing occured and so unstable stratification occured, which mean that this could not be recommended as storage through thermal stratification. Using a distributor was better than using inlet ports to form a sharp thermocline and to enhance the stratification. It was possible to get storage efficiency of 95% by using the distributor, which was higher than a storage efficiency of 85% obtained by using inlet ports in same operation condition. Furthermore, if the distributor was manufactured so that the mainpipe decreases in diameter toward the dead end to maintain constant static pressure, it might be predicted that further stable stratification and higher storage efficiency are obtainable(ie:more than 95%).
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.7
no.2
/
pp.319-328
/
1995
In this study, the experiment with 2rows-2columns fin-tube heat exchanger under forced convection and frosting condition is performed. The influence of each operating condition(the temperature of air, the humidity of air, the velocity of air, the temperature of coolant) on the growth of frost layer, air-side pressure drop, and characteristics of heat transfer is investigated. The experimental results show that the frost thickness increases rapidly in the early stage of frost formation and increases linearly after sometime. The frost thickness increases with the increase of the inlet air humidity and velocity and the decrease of inlet air temperature and coolant temperature. It is also found that the total energy transfer rate increases with the increase of inlet air temperature and velocity and with the decrease of inlet air humidity and coolant temperature.
A study on a buoyancy effect by the temperature difference between a inner room air and a inflowing cool air and also by Inlet velocity can contribute greatly to enhance performance of air conditioning system, so the study on the distribution characteristics of inflowed cool air is important to analyze the cool air storage in a room. For this study, in the real-sized model room, the temperature differences between inflowing cool air and inner room air are 10, 20, $30^{\circ}C$, and the inlet velocities of inflowing cool air are 1, 2, 3m/s respectively as dynamic parameters. Also, a anemos and a vane type diffuser are used as inlet geometric conditions. Following conclusions have been obtained through this study. 1) In case of the anemos type diffuser, it is found that a dimensionless temperature profile is low and the distribution of the inflowed cool air is uniform. and also, all diffuusers have a low temperature of the inner room as increasing the inlet velocity. 2) A mixing takes place rapidly in case of the anemos type diffuser when the temperature difference is low ${\Delta}T=10^{\circ}C$ and the inletvelocity is high V=3m/s. and the mixing degree is higher with the anemos type diffuser than the vane.
Journal of the Korean Society of Industry Convergence
/
v.22
no.2
/
pp.173-181
/
2019
This study was carried out numerically to investigate the flow characteristics in the Venturi tube with $90^{\circ}$ T-branch tube and the inflow of condensed water into the Venturi tube from the branch tube. In this study, the diameter of the branch tube(1, 2, 3mm) and the neck diameter of the Venturi tube(0.3, 0.9, 1.5mm) were varied. The flow rate of the water at the Venturi tube inlet is 80cc/min and the water temperature is 288K. The condensed water temperature at the branch tube inlet is 355K. It was found that the velocity and pressure of the fluid near the branch point in the Venturi tube were more dependent on the diameter of the Venturi tube than the diameter of the branch tube. The temperature of the mixed water at the exit of the Venturi tube was the highest when the Venturi tube's neck diameter is 0.9mm and the branch tube diameter is 2mm. This means that the condensed water is flowing well through the branch tube.
Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
International Journal of Automotive Technology
/
v.8
no.1
/
pp.27-31
/
2007
The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.
An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around on a module with longitudinal fin heat sink cooled by forced air flow. In the first method, inlet air flow(1-7m/s) and input power(3-5W) was varied after a heated module were placed on an adiabatic floor($320{\times}550{\times}1mm^{3}$). An adiabatic wall temperature was determinated to use liquid crystal film(LCF). In the second method to determinate heat transfer coefficient, inlet air flow(1-7m/s) and the heat flux of rubber heater($0.031-0.062\;W/cm^{2}$) was varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. In addition, surface oil-film visualization were performed to characterize the macroscopic flow-field around a module.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.