• Title/Summary/Keyword: $SrY_2S_4:Eu$

Search Result 37, Processing Time 0.024 seconds

Photoluminescence Properties of $Eu^{2+}$ and $Mn^{2+}$ Activated (Ba, Sr)$_2ZnS_3$ Red Phosphor with Optimal Composition for White LED.

  • Lee, Chi-Woo;Petrykin, Valery;Tezuka, Satoko;Kakihana, Masato
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1297-1299
    • /
    • 2009
  • A series of $Eu^{2+}/Mn^{2+}$ co-activated $Ba_{1.98-x}Sr_xZnS_3$ red emission phosphors was synthesized using the polymerizable complex method. The excitation spectra of the materials contain two wide bands centered at 345nm and 445nm, implicating their possible use for white LED lighting applications. In addition, substitution of Sr for Ba by 20% (x=0.4) improved drastically the emission intensity as well as the internal quantum efficiency compared to those for Sr-free $Ba_2ZnS_3:Eu^{2+}/Mn^{2+}$ phosphor.

  • PDF

Synthesis and Luminescent Characteristics of BaGa2S4:Eu2+ Green Phosphor for Light Emitting Diode (LED용 BaGa2S4:Eu2+ 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.761-765
    • /
    • 2006
  • [ $II-III_2-(S,Se)_4$ ] structured of phosphor has been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, the europium doped $BaGa_2S_4$ was prepared by solid-state method and had high potential application due to an emissive property of UV region. Also, the common sulfide phosphors were synthesized by using injurious $H_2S\;or\;CS_2$ gas. However, in this study $BaGa_2S_4:Eu^{2+}$ phosphor in addition to excess sulfur was prepared under at 5% $H_2/95%\;N_2$ reduction atmosphere. Thus, this process could be considered as large scale synthesis because of non-harmfulness and simplification. The photoluminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than that of commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.

Synthesis and Luminescence Properties of a Cyan-blue Thiosilicate-based Phosphor $SrSi_2S_5:Eu^{2+}$

  • Nakamuraa, Masayoshi;Katoa, Hideki;Takatsuka, Yuji;Petrykinc, Valery;Tezuka, Satoko;Kakihana, Masato
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.135-139
    • /
    • 2010
  • A series of Sr-Si-S compounds was synthesized using an advanced chemical method in which the use of one solution-based process uniformly dispersed the $Eu^{2+}$ activators in the host crystals, to find new compositions that would suit phosphor applications. Particular focus was given to the Si-rich region. This led to the synthesis of a single-phase compound that showed an unknown X-ray diffraction pattern. This compound had a composition close to that of $SrSi_2S_5$. When this compound is activated with $Eu^{2+}$ ($SrSi_2S_5:Eu^{2+}$), it shows a cyan-blue emission with a main luminescence peak at 495 nm. This emission is excited by wavelengths of 250-440 nm and has a maximum excitation at 350 nm.

Preparation and Photoluminescence Properties of $Ba_{1-x}M_xGa_2S_4:Eu^{2+}$ (M = Ca, Sr) Phosphor

  • Yoo, Hyoung-Sun;Kim, Sung-Wook;Han, Ji-Yeon;Park, Bong-Je;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.561-564
    • /
    • 2008
  • $Ba_{1-x}M_xGa_2S_4:Eu^{2+}$ (M = Ca, Sr) phosphor was prepared for white light emitting diodes application. Photoluminescence (PL) emission and excitation bands were red-shifted with increase of Ca and Sr content due to the crystal field effect. Moreover, the PL intensity under 450 nm was increased by substitution of Ca and Sr.

  • PDF

Photoluminescence properties of $CaS_{1-x}Se_x:Eu$ phosphors ($CaS_{1-x}Se_x:Eu$ 형광체의 발광 특성)

  • Ryu, Eun-Kyoung;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.204-209
    • /
    • 2007
  • We synthesized a series of $CaS_{1-x}Se_x:Eu$ red-emitting phosphors for application in phosphor-converted three-band white light emitting diode(LED). The photoluminescence and structural properties of $CaS_{1-x}Se_x:Eu$ were examined. The $CaS_{1-x}Se_x:Eu$ phosphors have a strong absorption at 455 nm, which is the emission wavelength of a blue LED. CaS:Eu has a red omission peak at 651 nm due to the $4f^65d^1(T_{2g}){\rightarrow}4f^7(^8S_{7/2})$ transition of the $Eu^{2+}$. The emission peak of $CaS_{1-x}Se_x:Eu$ is shifted from 651 to 598 nm with increasing Se content. $CaS_{1-x}Se_x:Eu$ can be used as wavelength-tunable red-emitting phosphors pumped by a blue LED. We also fabricated a three-band white LED by doping $SrGa_2S_4:Eu$ and $CaS_{0.50}Se_{0.50}:Eu$ phosphors onto a blue LED chip.

Cathodoluminescent properties of rare-earthe-doped $SrGa_2S_4$ thin film phosphors excited with low energy electrons

  • Nakanishi, Yoichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1015-1019
    • /
    • 2002
  • The deposition of $SrGa_2S_4$ thin film phosphors doped with Ce or Eu aiming at application for FEDs has been carried out by a multi-source deposition technique. A $SrGa_2S_4$ phase was formed by annealing process and $SrGa_2S_4$ thin films which were deposited using a $Ga_2S_3/Sr$ flux ratio larger than 50 and annealed in $H_2$S showed luminance and luminous efficiency of about 1700 cd/$m^2$ and 2.95 lm/W, respectively, with (0.13, 0.10) chromaticity in the activation with Ce, and about 4000 cd/$m^2$ and 7.05 lm/W, respectively, with (0.36, 0.60) under excitation with 3 kV and 60A/$cm^2$. The results obtained this experiment demonstrate the potential of $SrGa_2S_4$ thin film phosphors for FED screens.

  • PDF

The SrLiAl3N4:Eu2+ Phosphor Synthesized by the Raw Material Model Obtained by DFT Calculations

  • Park, Woon Bae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.217-221
    • /
    • 2017
  • Improvement studies of existing phosphors are needed for use in light emitting diodes (LEDs). Among the phosphors discovered recently, the SLA ($SrLiAl_3N_4:Eu^{2+}$) is a phosphor that has a narrow width. It is now known as a good red phosphor that meets the industry's needs for warm white (color temperature ranging from 2700 to 4000 K) and high CRI (> 80). However, SLA phosphors are obtained from difficult synthetic methods. All commercially available phosphors should be derived from the general solid state synthesis method. The phosphors produced by difficult synthetic methods will inevitably fall out of price competitiveness and will be scrapped. This study succeeded in synthesizing SLA ($SrLiAl_3N_4:Eu^{2+}$) phosphors by using a general solid phase synthesis method based on the reaction energy obtained from DFT calculations. As a result, we found an optimal solid state synthesis method for SLA phosphors.

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.