• Title/Summary/Keyword: $SnO_2$sensor

Search Result 250, Processing Time 0.046 seconds

Solid state gas sensors: improvement through material engineering

  • Han, Sang-Do;Korotcenkov, Ghenadii;Gwak, Ji-Hye
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.217-221
    • /
    • 2009
  • Different methods of material engineering, used for improvement of solid state gas sensors parameters are reviewed in this report. The wide possibilities of material engineering in optimization of gas sensing properties were demonstrated on the example of $SnO_2,\;TiO_2\;and\;In_2O_3$-based sensors.

Thin Film Gas Sensors Based on Tin Oxide for Acetonitrile (산화주석 기반의 아세토니트릴 검지용 박막형 가스센서)

  • Choi, Nak-Jin;Ban, Tae-Hyun;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Kim, Jae-Chang;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.218-223
    • /
    • 2004
  • Thin film gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is acetonitrile ($CH_{3}CN$) that is simulant gas of blood agent gas. Sensing materials are $SnO_{2}$, $SnO_{2}$/Pt, and (Sn/Pt)oxidation with thickness from $1000{\AA}$ to $3000{\AA}$. Sensor was consisted of sensing electrode with interdigit (IDT) type in front side and a heater in back side. Its dimension was $7{\times}10{\times}0.6mm^{3}$. Fabricated sensor was measured as flow type and monitored real time using PC. The optimal sensing material for $CH_{3}CN$ was {Sn($3000{\AA}$)/Pt($30{\AA}$)}oxidation and its sensitivity and operating temperature were 30%, $300^{\circ}C$ in $CH_{3}CN$ 3 ppm.

Fabrication and Evaluation of the SnO2 Based Gas Sensor for CO and NOx Detection (SnO2를 이용한 CO 및 NOx 가스 감지 센서 제작 및 특성 연구)

  • Kim, Man Jae;Lee, Yu-Jin;Ahn, Hyo-Jin;Lee, Sang Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.515-523
    • /
    • 2015
  • In this paper, we fabricated and evaluated the gas sensor for the detection of CO gas and $NO_X$ gas among the vehicle exhaust emission gasses. The $SnO_2$ (tin dioxide) layer is used as the detection material, and the thin-film type and the nano-fiber type layers are deposited with various thicknesses using sputtering method and electro spinning method, respectively. The experiments are performed in the chamber where the gas concentration is controlled with mass flow controller. The fabricated devices are applied to the CO and $NO_X$ gas, where the device with the thinner $SnO_2$ layer shows better sensitivity. The nano-fiber has the larger surface area, and the shorter response time and recovery time are obtained. From the experimental results, both types of gas sensors successfully detect CO and $NO_X$ gases, which can be applied to measure those gases from the vehicle emissions.

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura;Lee, Jiyoung;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.345-351
    • /
    • 2018
  • We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

A NOx gas sensor based on thennopile and embedded tin oxide catalyst (Thermopile과 삽입된 $SnO_2$ catalyst를 이용한 NOx 센서)

  • Lee, Chung-Il;Yoon, Seung-Il;Kim, Yong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1829-1832
    • /
    • 2008
  • This paper reports a novel gas sensing method by using a thermoelectric device, thermopile in this case, with an embedded tin oxide catalyst. By using a thin catalyst film, the response time and recovery time were remarkably improved. The fabricated gas sensor was characterized through detecting NOx gas with various concentrations.

  • PDF

Gas Sensing Characteristics of $SnO_{2}(Ca)/Pt$ Thick Film Using Pt Electrode for Hydrocarbon Gases (Pt 전극을 사용한 $SnO_{2}(Ca)/Pt$ 후막소자의 탄화수소계가스에 대한 감응특성)

  • Hong, Young-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.37-44
    • /
    • 1995
  • A coprecipitation method was used for preparing Ca and Pt doped $SnO_{2}$-based material. Crystallite size and specific surface area were investigated by TEM, XRD and BET analysis. $SnO_{2}(Ca)/Pt$ based thick film devices were prepared by a screen printing technique for hydrocarbon gas detecting. Then the electrical and sensing characteristics of devices were investigated. As Ca and Pt addition, the crystal growth of $SnO_{2}$ was suppressed during calcining and sintering, and the sensitivity of $SnO_{2}(Ca)/Pt$ thick film to gas was enhanced. Also any difference in the sensing properties has to be attributed to the Pt and Au electrode. For the 2000 ppm $CH_{4}$, the sensitivity of $SnO_{2}(Ca)/Pt$ thick film devices were about 83% at an operating temperature of $400^{\circ}C$.

  • PDF

Effects of Substrate on the Characteristics of SnO2 Thin Film Gas Sensors (기판 종류에 따른 박막형 SnO2 가스 센서의 응답특성)

  • Kim, Seon-Hoon;Park, Shin-Chul;Kim, Jin-Hyuk;Moon, Jong-Ha;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.111-114
    • /
    • 2003
  • Effects of substrate materials on the microstructure and the sensitivity of $SnO_2$thin film gas sensors have been studied. Various substrates were studied, such as oxidized silicon, sapphire, polished alumina, and unpolished alumina. It was observed that strong correlation exists between the electrical resistance and the CO gas sensitivity of the manufactured sensors and the surface roughness of $SnO_2$thin films, which in turn was related to the surface roughness of the original substrates. X$SnO_2$thin film gas sensor on unpolished alumina with the highest surface roughness showed the highest initial resistance and CO gas sensitivity. The transmission electron microscopy observation indicated that shape and size of the columnar microstructure of the thin films were not critically affected by the type of substrates.

Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor (나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향)

  • Hong, Sung-Jei;Isshiki Minoru;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.