• 제목/요약/키워드: $SnCl_2$ solution

검색결과 83건 처리시간 0.024초

The Effect of Solvent on the Dipole Moments for Organotin(Ⅳ) Complexes

  • Ahn, Sang-Woon;Kim, Dong-Heu;Oh, Se-Woung
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권1호
    • /
    • pp.3-16
    • /
    • 1984
  • The effect of solvent on the dipole moments for (chloromethyl) stannanes has been investigated by applying EHT calculation for the isomers of trigonal bipyramidal Sn(Ⅳ)$Cl_4X$ and $Cl_n$Sn(Ⅳ) $(CH_2Cl)_{4-n}$, octahedral Sn(Ⅳ)$Cl_42X$ and $Cl_nSn$(Ⅳ)$(CH_2Cl)_{4-n}$ 2X type complexes in dioxane and ethylacetate solutions (X: dioxane or ethylacetate). For Sn(Ⅳ)$Cl_4$ in dioxane solution, the calculated dipole moment for the trigonal bipyramidal Sn(Ⅳ)$Cl_4X$ type complex [isomer (b)] is closer to the experimental dipole moment than octahedral Sn(Ⅳ)$Cl_4X$2X type complexes. This calculated dipole moment suggests that Sn(Ⅳ)$Cl_4X$ may have the trigonal bipyramidal structure in dioxane solution. However, the calculated dipole moment for octahedral $Cl_3$Sn(Ⅳ) ($CH_2$Cl)2X type complex [Isomer (d)], ClSn(Ⅳ)(CH2Cl)32X type complex [Isomer(k)] and Cl2Sn(Ⅳ)(CH2Cl)22X type complex [Isomer(h)] are closer to the experimental dipole moments than other isomers for octahedral complexes and trigonal bipyramidal complexes. Such theoretical results indicate that $Cl_3Sn$(Ⅳ )($CH_2Cl$), ClSn(Ⅳ)$(CH_2Cl)_3$ and $Cl2Sn$(Ⅳ)$(CH_2Cl)_2$ complexes may have octahedral structures, Isomer(d), (k) and (h) in ethylacetate solution, respectively.

함침 방법의 차이에 따른 Pd, Pt-$SnO_2$의 프로판 가스 감응성 변화 (C3H8 Gas Sensitivity of Pd, Pt-$SnO_2$ Gas Sensor with Varying Impregnation Method)

  • 이종흔;박순자
    • 한국세라믹학회지
    • /
    • 제27권5호
    • /
    • pp.638-644
    • /
    • 1990
  • The C3H8 gas sensitivities of SnO2, Pd-SnO2, Pt-SnO2 gas sensor are looked over with the impregnation method of PdCl2, H2PtCl6 solution on SnO2. The Cl- ion due to incomplete decomposition of PdCl2 at 80$0^{\circ}C$ for 30 min decrease the C3H8 gas sensitivity of SnO2, and the sensitivity is increased by the impreganation of H2PtCl6 solution on SnO2 because of its lower decomposition temperature compared with PdCl2. The C3H8 gas sensitivities of Pd-SnO2, Pt-SnO2 impregnated slightly after 1st sintering are larger than that of pure SnO2 sensor because very small amount of Cl- ion exist in sample due to smaller amount of impregnaiton.

  • PDF

공침법에 의해 제조된 $TiO_2-SnO_2$ 미분말의 결정구조 (Crystal Structure of $TiO_2-SnO_2$ Fine Powders Prepared by Coprecipitation)

  • 이종흔;박순자
    • 한국세라믹학회지
    • /
    • 제30권9호
    • /
    • pp.740-746
    • /
    • 1993
  • TiO2-SnO2 fine powders prepared by coprecipitation from TiCl4-SnCl4 aqueous solution, and their crystal structures were studied. All the TiO2-SnO2 fine powders calcined at 180~$700^{\circ}C$ showed the complete solid solution between TiO2(rutile structure) and SnO2(rutile structure). This crystal structure of TiO2-SnO2 powders is thought to be originated mainly from the heterogeneous nucleation of Ti-hydroxde on the Sn-hydroxide with coherent structure.

  • PDF

초음파분무법에 의해 제작된 $SnO_2(:F)$ 박막의 특성 (Properties of fluorine-doped $SnO_2$ films prepared by the ultrasonic spray deposition)

  • Byung Seok Yu;Sei Woong Yoo;Jeong Hoon Lee
    • 한국결정성장학회지
    • /
    • 제4권3호
    • /
    • pp.294-305
    • /
    • 1994
  • 초음파 분무법에 의한 $SnO_2(:F)$박막의 제막시 DBDA와 $SnCl_4.5H_2O$를 출발물질로 사용하은 경우 제막조건이 전기적, 광학적 그리고 표면형상 드의 특성에 미치는 영향에 대해 조사하였다. 박막의 비저항은 출발물질에 관계없이 용액내의 F/Sn의 비가 0.6일 때까지는 급격히 증가하였으며, $SnO_2.5H_2O$를 출발물질로 사용한 경우 DBDA의 경우보다 낮았다. 용액내의 F/Sn의 비가 1일 때 출발물질로서, $SnO_2.5H_2O$과 DBDA를 사용한 경우 광투과율은 각각 83%와 85%로서 DBDA 사용한 경우가 다소 높았다.

  • PDF

리튬 이온 전지 탄소부극용 Sn-GIC의 합성과 그 전기화학적 특성 (Synthesis of Sn-GIC for Carbon Electrode of Lithium Ion Battery and Its Electrochemical Characteristics)

  • 엄의흠;이택영;이철태
    • 공업화학
    • /
    • 제18권5호
    • /
    • pp.449-453
    • /
    • 2007
  • 리튬이온이차전지에 사용되는 탄소부극의 성능 향상을 위하여 새로운 탄소부극물질로서 Sn-GIC (Graphite intercalated compound)를 합성하고 그 전기화학적 특성을 조사하였다. 합성시 $SnCl_2$ 수용액의 농도가 증가할수록, 그리고 수용액에 함침한 후 건조한 시료의 열처리 온도가 증가할수록 흑연에 삽입되는 Sn의 함량이 증가하였으며, 또한 흑연 내부로 삽입된 Sn의 함량이 증가함에 따라 이를 부극활물질로 사용한 cell의 초기 방전용량은 증가하였다. 가장 우수한 특성을 나타내는 1.0M $SnCl_2$ 수용액에 함침한 후 $900^{\circ}C$에서 열처리하여 제조한 Sn-GIC는 346 mA/g의 초기용량과 10 cycle 후 13%의 용량감소를 나타내었다.

염산용액에서 Alamine 336에 의한 주석(IV)의 용매추출 (Solvent Extraction of Sn(IV) from Hydrochloric Acid Solution by Alamine 336)

  • 안재우;서재성;이만승
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.929-935
    • /
    • 2010
  • The solvent extraction behavior of Sn(IV) from hydrochloric acid was investigated using Alamine336 (Tri-n-cotylamine) as an extractant. The experimental parameters of the concentration of the HCl solution, chloride ions, extractant, and Sn(IV) were assessed. The results showed that the extraction percentage of Sn(IV) was more than 95% in our experimental range and was only slightly affected by the HCl concentration. The extraction reaction of Sn(IV) by Alamine 336 from the chloride solution was identified as follows: $SnCl_6{^{2-}}+2R_3NHCl_{(org)}=(R_3NH)_2SnCl_{6(org)}+2Cl^-$ and $K=6.3{\times}10^4$. Stripping experiments of Sn(IV) from the loaded organic phase were done by using several stripping agents. A stripping percentage of 90% was obtained with a 2.0 M NaOH solution.

Ammonium Nitrate를 이용한 침전법으로 제조된 $SnO_2$ 특성분석 (Characteristics of $SnO_2$ Prepared by Preparation Method with Ammonium Nitrate)

  • 손향호;이원규
    • 공업화학
    • /
    • 제21권4호
    • /
    • pp.440-444
    • /
    • 2010
  • $SnCl_4$와 침전제로 ammonium nitrate ($NH_4NO_3$)의 수용액들을 사용하여 $90^{\circ}C$에서 침전반응으로 얻은 주석산(stannic acid)을 열처리하여 $SnO_2$ 분말을 제조하였으며, 요소($(NH_2)_2CO$)를 침전제로 사용한 균일침전법으로 주석산을 제조하여 열처리 전후로 재료의 특성을 상호 비교하였다. Ammonium nitrate의 침전법에 의한 주석산은 열처리에 따른 중량감소가 $700^{\circ}C$까지 이루어졌으며, 전체 중량감소는 16.5%였다. 또한 $600^{\circ}C$의 열처리로 비정질 주석산이 완전한 결정질의 $SnO_2$로 상변화가 이루어졌다. 주석산 제조 과정에서 $SnCl_4$ 수용액의 농도 증가 및 열처리 온도 증가에 따라 $SnO_2$의 결정입계가 증가하였다. 요소를 침전제로 사용한 균일침전법은 ammonium nitrate를 침전제로 하는 균일법보다 같은 조건의 열처리 공정 후에 상대적으로 미세한 결정입계의 $SnO_2$를 얻을 수 있었다.

SnO2 나노 분말의 합성 및 가스 감응 특성 (Gas Sensing Characteristics and Preparation of SnO2 Nano Powders)

  • 이지영;유윤식;유일
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

Structural and Optical Properties of the $(C_nH_{2n}_+_1NH_3)_2SnCl_4$ (n=2, 4, 6, 8, and 10) System

  • 인리주;요철현
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.947-951
    • /
    • 1998
  • $K_2NiF_4$-type layered compounds of the ($C_nH_{2n+1}NH_3)_2SnCl_4$ (n=2, 4, 6, 8, and 10) system have been synthesized from a stoichiometric mixture of $SnCl_2$ and alkyl ammonium salt using a low temperature solution technique under the inert atmosphere condition. Their crystal structures are assigned to the orthorhombic system by X-ray powder diffraction analysis. The a and b cell parameters show small changes. However, the c parameter is varied significantly according to the increment of alkyl chains of the organic layer which is located between inorganic layers in the compounds. The conformational phase transitions of the compounds are studied by the DSC in the temperature range of 300 to 500 K. FT-IR and Raman spectra are analyzed in the ranges of 1300 to 4000 cm-1 and of 50 to 360 $cm^{-1}$ with Ar-laser (λ=514.5 nm) excitation, respectively. Photoluminescence phenomena are observed for some compounds. The bond-length of Sn-Cl is determined by the EXAFS spectroscopic analysis.

A Preponderant Enhancement of Conversion Efficiency by Surface Coating of $SnO_2$ Nanoparticles in Organic MK-2 Dye Sensitized Solar Cell

  • Son, Dae-Yong;Lee, Chang-Ryul;Park, Nam-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.218-218
    • /
    • 2012
  • Nanocrystalline $SnO_2$ colloids are synthesized by hydrolysis of $SnCl_4{\cdot}5H_2O$ in aqueous ammonia solution. The synthesized $SnO_2$ nanoparticles with ca. 15 nm in diameter are coated on a fluorinedoped thin oxide (FTO) conductive substrate and heated at $550^{\circ}C$. The annealed $SnO_2$ film is treated with aqueous $TiCl_4$ solution, which is sensitzied with MK-2 dye (2-cyano-3-[5'''-(9-ethyl- 9H-carbazol-3-yl)-3',3'',3''',4-tetra-n-hexyl-[2,2',5',2'',5'',2''']-quater thiophen-5-yl]). Compared to bare $SnO_2$ film, the conversion efficiency is significantly improved from 0.22% to 3.13% after surface treatment of $SnO_2$ with $TiCl_4$, which is mainly due to the large increases in both photocurrent density from 1.33 to $9.46mA/cm^2$ and voltage from 315 to 634 mV. It is noted that little change in the amount of the adsorbed dye is detected from 1.21 for the bare $SnO_2$ to $1.28{\mu}mol/cm^2$ for the $TiCl_{4-}$ treated $SnO_2$. This indicates that the photocurrent density increased by more than 6 times is not closely related to the dye loading concentration. From the photocurrent and voltage transient spectroscopic studies, electron life time increases by about 13 order of magnitude, whereas electron diffusion coefficient decreases by about 3.6 times after $TiCl_4$ treatment. Slow electron diffusion rate offers sufficient time for regeneration kinetics. As a result, charge collection efficiency of about 40% before $TiCl_4$ treatment is improved to 95% after $TiCl_4$ treatment. The large increase in voltage is due to the significant increase in electron life time, associated with upward shift of fermi energy.

  • PDF