Browse > Article

Characteristics of $SnO_2$ Prepared by Preparation Method with Ammonium Nitrate  

Son, Hyang-Ho (Department of Chemical Engineering, Kangwon National University)
Lee, Won-Gyu (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.21, no.4, 2010 , pp. 440-444 More about this Journal
Abstract
$SnO_2$ powders were prepared from the calcination of stannic acids precipitated from the aqueous solution of $SnCl_4$ with ammonium nitrate as a precipitator at $90^{\circ}C$. For the comparison of properties, the stannic acids were prepared from the homogeneous precipitation method using urea as a precipitator at the same temperature. The stannic acid from ammonium nitrate at a thermal gravity analysis showed the weight loss until $700^{\circ}C$ and the percentage of total weight loss was 16.5%. The crystallization of stannic acid into $SnO_2$ finished in the calcination at $600^{\circ}C$ for 2 h. The crystallite size of $SnO_2$ increased with the increase of calcination temperature and initial concentration of $SnCl_4$ solution. In case of the same calcination condition, $SnO_2$ prepared from homogeneous precipitation using urea had a relatively smaller crystallite size rather than $SnO_2$ prepared from ammonium nitrate.
Keywords
precipitation method; $SnO_2$; stannic acid; calcination; ammonium nitrate;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 G. Zhang and M. Liu, J. Mater. Sci., 34, 3213 (1999).   DOI   ScienceOn
2 M. Bhagwat, P. Shah, and V. Ramaswamy, Mater. Lett., 57, 1604 (2003).   DOI   ScienceOn
3 O. Acabas, E. Suvaci, and A. Dogan, Ceram. Int., 33, 537 (2007).   DOI   ScienceOn
4 H. K. Varma, K. G. K. Warrier, and A. D. Damodaran, Ceram. Int., 16, 73 (1990).   DOI   ScienceOn
5 G. S. V Coles and G. Williams, Sens. Actuators, 3, 7 (1991).   DOI   ScienceOn
6 N. S. Baik, G. Sakai, N. Miura, and N. Yamazoe, J. Am. Ceram. Soc., 83, 2983 (2000).   DOI   ScienceOn
7 P. L. Iin, A. D. Pelton, and C. W. Bale, J. Am. Ceram. Soc. Bull., 66, 221 (1981).
8 M. Okuya, S. Kaneko, K. Hiroshima, I. Yagi, and K. Murakami, J. Eur. Ceram. Soc., 21, 2099 (2001).   DOI   ScienceOn
9 P. T. Moseley and B. C. Tofield, Mater. Sci. Technol., 1, 505 (1985).   DOI   ScienceOn
10 K. C. Song, J. H. Kim, and J. S. Sung, J. Kor. Inst. Chem. Eng., 35, 457 (1997).
11 Y. Shimizu and M. Egashira, MRS Bull., 24, 18 (1999).
12 S. Hirano, Bull. Ceram. Soc. Jap., 22, 1052 (1987).
13 D. W. Johnson, Am. Ceram, Soc. Bull., 60, 221 (1981).
14 P. T. Wierzchowski and L. W. Zatorski, Appl. Catal. B: Environ., 44, 1 (2003).   DOI   ScienceOn
15 M. R. C. Santos, P. R. Bueno, E. Longo, and J. A. Varela, J. Eur. Ceram. Soc., 21, 161 (2001)   DOI   ScienceOn
16 K. C. Song and Y. Kang, Mater. Lett., 42, 283 (2000).   DOI   ScienceOn
17 J. H. Lee and S. J. Park, J. Am. Ceram. Soc., 76, 777 (1993).   DOI   ScienceOn
18 K. C. Song and J. H. Kim, J. Collid Interf. Sci., 212, 193 (1999).   DOI   ScienceOn
19 J. F. Wang, Y. J. Wang, W. B. Su, H. C. Chen, and W. X. Wang, Mater. Sci. Eng., B96, 8 (2002).