• Title/Summary/Keyword: $SiO_2$-doped ZnO

Search Result 111, Processing Time 0.051 seconds

RFID Antenna Based on Ga-doped ZnO Transparent Conducting Oxide (Ga-doped ZnO 투명전도막의 RFID 안테나 응용)

  • Han, Jae-Sung;Lee, Seok-Jin;Jung, Tae-Hwan;Kim, Jeong-Yeon;Park, Jae-Hwan;Lim, Dong-Gun;Lim, Seong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.78-79
    • /
    • 2009
  • 본 연구에서는 ZnO계 투명전극 소재를 이용하여 RFID 태그 안테나에 적용 가능성 여부를 확인하였다. Si 기판위에 RF 스퍼터링 공정에 의해 Ga-doped ZnO 투명 마이크로스트립 스파이혈 안테나를 $2{\mu}m$를 증착하여 구현하고 그 전기적 특성을 측정하였다. HFSS 전자계 시뮬레이터를 사용하여 13.56MHz HF 주파수 대역에서 태그 안테나로서의 가능성을 검증한 후 Ga-doped ZnO 타겟을 사용한 RF 스퍼터링 공정에 의하여 스파이럴 안테나 패턴을 구현하였다. 마이크로스트립 선폭 및 선 간격을 $50\sim200{\mu}m$때 영역에서 조절하면서 안테나 패턴을 설계하였다. S 파라메터, 자기공진주파수 및 Q값을 시뮬레이션으로부터 도출하였다. Al $2{\mu}m$ 증착한 시편에 비하여 약 -10dB 정도의 이득저하가 발생하였으나 리더-태그를 밀착시킨 조건에서 1.7V (13.56MHz) 전압검출이 가능하였다.

  • PDF

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

The Photoluminescence and Decay time of the Green Phosphor $Zn_2$$SiO_4$:Mn, Mg (Mg와 Mn이 도핑된 $Zn_2$$SiO_4$ : Mn, Mg 녹색 형광체의 빛 발광과 잔광시간 특성)

  • 조봉현;황택성;손기선;박희동;장현주
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1101-1106
    • /
    • 1998
  • Various $Zn_{2-x}SiO_4$:xMn based green phosphors were investigated in association with a co-dopant. The co-dopant incorporated into the phosphors are believed to alter the internal energy state of $Zn_{2-x}SiO_4$ : xMn So that the improvement in their intensity could be expected. Phosphor samples were prepared using the solid state reaction therein raw powders are mixed in the acetone and successively fired at $1300^{\circ}C$ for 4 hour. The fired powders are also heated up to $900^{\circ}C$ for 2 hour in the reduced atmoshpere and thereby giving The fired powders are also heated up to $900^{\circ}C$ for 2 hour in the reduced atmosphere and thereby giving rise to conspicuous enhancement of radiative efficiency. Basically the 0.08 mole ratio of the Mn con-centrations has the maximum value of the intensity so that a co-dopant are added to this Mn con-centration. When the Mg is co-doped with Mn luminescent intensity is proven to be promoted significantly.

  • PDF

Electrical and optical Properties $SiO_2$ doped ZnO film transparent conductive oxide(TCO)

  • Bae, Kang;Ryu, Sung-Won;Hong, Jae-Suk;Park, Jeong-Sik;Park, Seoung-Hwan;Kim, Hwa-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1437-1439
    • /
    • 2009
  • Electrical and optical properties of $SiO_2$-doped ZnO (SZO) films on the corning 7059 glass substrates by using rfmagnetron sputtering method are investigated. The deposition rate becomes maximum near 3 wt.% and gradually decreases when the $SiO_2$ content further increases. The growth rates at 3 wt.% is $4^{\circ}$A/s. We found that the average transmittance of all films is over 80% in the wavelength range above 500 nm. The optical band gap decreases from 3.52 to 3.33 eV with an increase in thickness. X-ray diffraction patterns show that the film with a relatively low $SiO_2$ content (< 4 wt.%) is amorphous. SZO films at the $SiO_2$ contents of 2 wt.% shows the resistivity of about $3.8{\times}10^{-3}{\cdot}cm$. The sheet resistance decreases with increasing the heat treatment temperature.

  • PDF

Back-reflector의 최적화 및 적용에 따른 이종접합 태양전지의 특성에 관한 연구

  • An, Si-Hyeon;Jo, Jae-Hyeon;Park, Cheol-Min;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.392-392
    • /
    • 2011
  • 현재의 태양전지에 사용되는 wafer는 원가저감을 위해 점점 얇아지고 있는 추세이다. 하지만 wafer가 얇아질수록 장파장 영역의 광자는 충분히 활용할 수 없게 된다. 대부분의 광자는 50um 지점에 도달하였을 때 그 역할을 다하고 소멸하게 되며, 특히 800nm 이상의 장파장에 대한 generation rate는 wafer 두께에 따라 급격한 차이를 보이게 된다. 따라서 장파장 영역의 광자를 효율적으로 사용할 뿐만 아니라 원가 저감을 위해 더욱 얇아지고 있는 추세의 wafer의 장파장 이용을 보상하기 위해서 TCO를 이용한 back-reflector의 역할은 가장 좋은 해결책이 될 것이다. 본 연구에서는 Macleod를 이용하여 ZnO, Al-doped ZnO, TiN, TiO2와 같은 다양한 TCO 물질에 대한 다양한 simulation을 실시 하여 reflectance 특성을 알아보았다. 상기 simulation결과로써 Al-doped ZnO가 가장 reflectance 특성이 좋게 나타났었으며 이를 이종접합 태양전지에 적용하여 광학적 및 전기적 특성 변화에 대해서 분석하였다.

  • PDF

Synthesis of Nanoparticles via Surface Modification for Electronic Applications

  • Lee, Burtrand I.;Lu, Song-Wei
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.35-58
    • /
    • 2000
  • The demand for sub-micrometer or nanometer functional ceramic powders with a better suspension behavior in aqueous media in increasing. Redispersible barium titanate (BT) nanocrystals, green light emitting Mn2+ doped Zn$_2$SiO$_4$ and ZnS nanoparticle phosphors were synthesized by a hydrothermal method or chemical precipitation with surface modification. The nanoparticle redispersibility for BT was achieved by using a polymeric surfactant. X-ray diffraction(XRD) results indicated that the BT particles are of cubic phase with 80 nm in size. XRD results of zinc silicate phosphor indicate that seeds play an important role in enhancing the nucleation and crystallization of Zn$_2$SiO$_4$ crystals in a hydrothermal condition. This paper describes and discuss the methods of surface modification, and the resulting related properties for BT, zinc silicate and zinc sulfide.

  • PDF

The study of the characteristic of n-ZnO:In/p-Si(111) heterostructure using Pulsed Laser Deposition (PLD법으로 증착된 n-ZnO:In/p-Si(111) 이종접합구조의 특성연구)

  • Jang, B.L.;Lee, J.Y.;Lee, J.H.;Kim, J.J.;Kim, H.S.;Lee, D.W.;Lee, W.J.;Cho, H.K.;Lee, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.355-356
    • /
    • 2008
  • In this work, ZnO films doped with different contents of Indium (0.1at.%, 0.3at.%, 0.6at.%, respectively) were deposited on Si (111) substrate that has 1~20 $\Omega$cm by pulsed laser deposition (PLD) at $600^{\circ}C$ for 30min. The thickness of the films are about 250 nm. The structural, optical and electrical properties of the films were investigated using X-ray Diffraction (XRD), Atomic force microscope (AFM), Photoluminescence (PL) and Hall measurement. It has been found that RMS of the films is decreased and grain size is increased with increasing the contents of doped Indium. The results of the Photoluminescence properties were indicated that the films have UV emission about 380nm and shows a little red shitf with increasing contents of doped indium. The result of the Hall measurement shows that the concentration and resisitivity in doped ZnO are as changing as one order, respectively ${\sim}10^{18}/cm^2$, ${\sim}10^{-2}cm{\Omega}cm$.

  • PDF

ZnO Nanostructure Characteristics by VLS Synthesis (VLS 합성법을 이용한 ZnO 나노구조의 특성)

  • Choi, Yuri;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO) nanorods were grown on the pre-oxidized silicon substrate with the assistance of Au and the fluorine-doped tin oxide (FTO) based on the catalysts by vapor-liquid-solid (VLS) synthesis. Two types of ZnO powder particle size, 20nm, $20{\mu}m$, were used as a source material, respectively The properties of the nanorods such as morphological characteristics, chemical composition and crystalline properties were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscope (FE-SEM). The particle size of ZnO source strongly affected the growth of ZnO nanostructures as well as the crystallographic structure. All the ZnO nanostructures are hexagonal and single crystal in nature. It is found that $1030^{\circ}C$ is a suitable optimum growth temperature and 20 nm is a optimum ZnO powder particle size. Nanorods were fabricated on the FTO deposition with large electronegativity and we found that the electric potential of nanorods rises as the ratio of current rises, there is direct relationship with the catalysts, Therefore, it was considered that Sn can be the alternative material of Au in the formation of ZnO nanostructures.

Computer simulation for the effects of inserting the textured ZnO and buffer layer in the rear side of ZnO/nip-SiC: H/metal type amorphous silicon solar cells (Zno/nip-SiC:H/금속기판 구조 비정질 실리콘 태양전지의 후면 ZnO 및 완충층 삽입 효과에 대한 컴퓨터 수치해석)

  • Jang, Jae-Hoon;Lim, Koeng-Su
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1277-1279
    • /
    • 1994
  • In the structure of ZnO/nip-SiC: H/metal substrate amorphous silicon (a-Si:H) solar cells, the effects of inserting a rear textured ZnO in the p-SiC:H/metal interface and a graded bandgap buffer layer in the i/p-SiC:H have been analysed by computer simulation. The incident light was taken to have an intensity of $100mW/cm^2$(AM-1). The thickness of the a-Si:H n, ${\delta}$-doped a-SiC:H p, and buffer layers was assumed to be $200{\AA},\;66{\AA}$, and $80{\AA}$, respectively. The scattering coefficients of the front and back ZnO were taken to be 0.2 and 0.7, respectively. Inserting the rear buffer layer significantly increases the open circuit voltage($V_{oc}$) due to reduction of the i/p interface recombination rate. The use of textured ZnO markedly improves collection efficiency in the long wavelengths( above ${\sim}550nm$ ) by back scattering and light confinement effects, resulting in dramatic enhancement of the short circuit current density($J_{sc}$). By using the rear buffer and textured ZnO, the i-layer thickness of the ceil for obtaining the maximum efficiency becomes thinner(${\sim}2500{\AA}$). From these results, it is concluded that the use of textured ZnO and buffer layer at the backside of the ceil is very effective for enhancing the conversion efficiency and reducing the degradation of a-Si:H pin-type solar cells.

  • PDF