• Title/Summary/Keyword: $SiO_2$ layer

Search Result 1,763, Processing Time 0.034 seconds

Optical Characteristics of Transparent Privacy Film with SiO2/SiON Multi-Layer (SiO2/SiON 다층박막 적용 투명보안필름의 광특성 연구)

  • Sung, Hyeong Seok;Kwon, Jin Gu;Chae, Hee Il;Han, Hyeon Seong;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.287-295
    • /
    • 2019
  • Privacy films are typically manufactured by combining black resin and transparent louver-shaped patterns. The use of black resin results in excellent light-shielding. However, black resin can reduce the transmittance of privacy films at the front viewing angle. In this study, we applied $SiO_2/SiON$ multi-layer thin films on a privacy film to maintain transmittance at the front viewing angle and improve light-shielding at the side viewing angle. We determined the optimum combination of thicknesses of the $SiO_2/SiON$ multi-layer stacks to increase the overall transmittance; the light shielding could be maximized at the side viewing angle.

In-situ Monitoring of Anodic Oxidation of p-type Si(100) by Electrochemical Impedance Techniques in Nonaqueous and Aqueous Solutions

  • 김민수;김경구;김상열;김영태;원영희;최연익;모선일
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1049-1055
    • /
    • 1999
  • Electrochemical oxidation of silicon (p-type Si(100)) at room temperature in ethylene glycol and in aqueous solutions has been performed by applying constant low current densities for the preparation of thin SiO2 layers. In-situ ac impedance spectroscopic methods have been employed to characterize the interfaces of electrolyte/oxide/semiconductor and to estimate the thickness of the oxide layer. The thicknesses of SiO2 layers calculated from the capacitive impedance were in the range of 25-100Å depending on the experimental conditions. The anodic polarization resistance parallel with the oxide layer capacitance increased continuously to a very large value in ethylene glycol solution. However, it decreased above 4 V in aqueous solutions, where oxygen evolved through the oxidation of water. Interstitially dissolved oxygen molecules in SiO2 layer at above the oxygen evolution potential were expected to facilitate the formation of SiO2 at the interfaces. Thin SiO2 films grew efficiently at a controlled rate during the application of low anodization currents in aqueous solutions.

Characterization of $HfO_2$/Hf/Si MOS Capacitor with Annealing Condition (열처리 조건에 따른 $HfO_2$/Hf/Si 박막의 MOS 커패시터 특성)

  • Lee, Dae-Gab;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.8-9
    • /
    • 2006
  • Hafnium oxide ($HfO_2$) thin films were deposited on p-type (100) silicon wafers by atomic layer deposition (ALD) using TEMAHf and $O_3$. Prior to the deposition of $HfO_2$ films, a thin Hf ($10\;{\AA}$) metal layer was deposited. Deposition temperature of $HfO_2$ thin film was $350^{\circ}C$ and its thickness was $150\;{\AA}$. Samples were then annealed using furnace heating to temperature ranges from 500 to $900^{\circ}C$. The MOS capacitor of round-type was fabricated on Si substrates. Thermally evaporated $3000\;{\AA}$-thick AI was used as top electrode. In this work, We study the interface characterization of $HfO_2$/Hf/Si MOS capacitor depending on annealing temperature. Through AES(Auger Electron Spectroscopy), capacitance-voltage (C-V) and current-voltage (I-V) analysis, the role of Hf layer for the better $HfO_2$/Si interface property was investigated. We found that Hf meta1 layer in our structure effective1y suppressed the generation of interfacial $SiO_2$ layer between $HfO_2$ film and silicon substrate.

  • PDF

Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness (버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun;Lee, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Boron Diffused Layer Formation Process and Characteristics for High Efficiency N-type Crystalline Silicon Solar Cell Applications (N-type 고효율 태양전지용 Boron Diffused Layer의 형성 방법 및 특성 분석)

  • Shim, Gyeongbae;Park, Cheolmin;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.139-143
    • /
    • 2017
  • N-type crystalline silicon solar cells have high metal impurity tolerance and higher minority carrier lifetime that increases conversion efficiency. However, junction quality between the boron diffused layer and the n-type substrate is more important for increased efficiency. In this paper, the current status and prospects for boron diffused layers in N-type crystalline silicon solar cell applications are described. Boron diffused layer formation methods (thermal diffusion and co-diffusion using $a-SiO_X:B$), boron rich layer (BRL) and boron silicate glass (BSG) reactions, and analysis of the effects to improve junction characteristics are discussed. In-situ oxidation is performed to remove the boron rich layer. The oxidation process after diffusion shows a lower B-O peak than before the Oxidation process was changed into $SiO_2$ phase by FTIR and BRL. The $a-SiO_X:B$ layer is deposited by PECVD using $SiH_4$, $B_2H_6$, $H_2$, $CO_2$ gases in N-type wafer and annealed by thermal tube furnace for performing the P+ layer. MCLT (minority carrier lifetime) is improved by increasing $SiH_4$ and $B_2H_6$. When $a-SiO_X:B$ is removed, the Si-O peak decreases and the B-H peak declines a little, but MCLT is improved by hydrogen passivated inactive boron atoms. In this paper, we focused on the boron emitter for N-type crystalline solar cells.

Quantum well intermixing of compressively strained InGaAs/InGaAsP multiple quantum well structure by using impurity-free vacancy diffusion technique (Impurity-free vacancy diffusion 방법을 이용하여 압축 응력을 가진 InGaAs/InGaAsP 다중양자우물 구조의 무질서화)

  • 김현수;박정우;오대곤;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.150-154
    • /
    • 2000
  • We investigated the quantum well intermixing (QWI) of a compressively strained InGaAs/InGaAsP multiple quantum well (MQW) by using impurity free vacancy diffusion technique. The samples with InGaAs/$SiO_2$ capping layer showed a higher degree of intermixing compared to that of InP/$SiO_2$ capping layer after rapid thermal annealing (RTA). Band-gap shift difference as large as 123 meV (195 nm) was observed between samples capped with InGaAs/$SiO_2$ and with InP/$SiO_2$ layer at RTA temperature of $700^{\circ}C$. Using the InGaAs/$SiO_2$ cap layer, the band-gap wavelength of MQW was changed by the intermixing from 1.55 $\mu\textrm{m}$ band to 1.3 $\mu\textrm{m}$ band with a wavelength shift of a 237 nm. The transform from MQW structure to homogenous alloy was observed above the RTA temperature of $700^{\circ}C$.

  • PDF

Effect of SiO2 and Nb2O5 Buffer Layer on Optical Characteristics of ITO Thin Film

  • Kwon, Yong-Han;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2015
  • This paper presents the results of the optical characteristics of ITO thin film with different buffer layer thicknesses of $SiO_2$ and $Nb_2O_5$ for touch sensor application. $SiO_2$ and $Nb_2O_5$ buffer layers were deposited using RF magnetron sputtering equipment. The buffer layers were inserted between glass and ITO layers. In order to compare with the experimental results, the Essential Macleod Program (EMP) was adopted. Based on EMP simulation, the [$Nb_2O_5{\mid}SiO_2{\mid}ITO$] multi-layered thin film exhibited high transmittance of more than 85% in the visible region. The actual experimental results also showed transmittance of more than 85% in the visible region, indicating that the simulated results were well matched with the experimental results. The sheet resistance of ITO based film was about $340{\Omega}/sq$. The surface roughness maintained a relatively small value within the range of 0.1~0.4 nm when using the $Nb_2O_5$ and $SiO_2$ buffer layers.

High-temperature oxidation of Ti3(Al,Si)C2 nano-laminated compounds in air

  • Lee, Hwa-Shin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • The compound, Ti3(Al,Si)C2, was synthesized by hot pressing a powder mixture of TiCX, Al and Si. Its oxidation at 900 and 1000 oC in air for up to 50 h resulted in the formation of rutile-TiO2, -Al2O3 and amorphous SiO2. During oxidation, Ti diffused outwards to form the outer TiO2 layer, and oxygen was transported inwards to form the inner mixed layer.

  • PDF

The Properties of Passivation Films on Al2O3/SiNX Stack Layer in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지의 Al2O3/SiNX 패시베이션 특성 분석)

  • Hyun, Ji Yeon;Song, In Seol;Kim, Jae Eun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.63-67
    • /
    • 2017
  • Aluminum oxide ($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surface. The quality of passivation layer is important for high-efficiency silicon solar cell. double-layer structures have many advantages over single-layer materials. $Al_2O_3/SiN_X$ passivation stacks have been widely adopted for high- efficiency silicon solar cells. The first layer, $Al_2O_3$, passivates the surface, while $SiN_X$ acts as a hydrogen source that saturates silicon dangling bonds during annealing treatment. We explored the properties on passivation film of $Al_2O_3/SiN_X$ stack layer with changing the conditions. For the post annealing temperature, it was found that $500^{\circ}C$ is the most suitable temperature to improvement surface passivation.

Quantitative Analysis of Ultrathin SiO2 Interfacial Layer by AES Depth Profilitng

  • Soh, Ju-Won;Kim, Jong-Seok;Lee, Won-Jong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 1995
  • When a $Ta_O_5$ dielectric film is deposited on a bare silicon, the growth of $SiO_2$ at the $Ta_O_5$/Si interface cannot be avoided. Even though the $SiO_2$ layer is ultrathin (a few nm), it has great effects on the electrical properties of the capacitor. The concentration depth profiles of the ultrathin interfacial $SiO_2$ and $SiO_2/Si_3N_4$ layers were obtained using an Auger electron spectroscopy (AES) equipped with a cylindrical mirror analyzer (CMA). These AES depth profiles were quantitatively analyzed by comparing with the theoretical depth profiles which were obtained by considering the inelastic mean free path of Auger electrons and the angular acceptance function of CMA. The direct measurement of the interfacial layer thicknesses by using a high resolution cross-sectional TEM confirmed the accuracy of the AES depth analysis. The $SiO_2/Si_3N_4$ double layers, which were not distinguishable from each other under the TEM observation, could be effectively analyzed by the AES depth profiling technique.

  • PDF