• Title/Summary/Keyword: $SiN_{x}$

Search Result 944, Processing Time 0.032 seconds

화학적 방법으로 성장된 ZnO nanorod 구조에서 Ag 나노입자의 영향

  • Go, Yeong-Hwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.189-189
    • /
    • 2010
  • ZnO nanorods 구조는 광소자 및 태양광 소자의 성능을 향상시키기 위해서 무반사계수, 광추출효율, 전기적, 열적 전도도를 개선시킬 수 있어, 매우 큰 관심을 가지고 왔다. 또한 Ag 나노입자는 표면 플라즈몬 효과를 이용하여 LED나 태양전지에 응용하여 소자의 성능이 향상됨을 이론적, 실험적으로 증명되어 왔으며, 현재에도 활발한 연구가 진행되고 있다. 이러한 ZnO nanorods 특성과 Ag 나노입자의 표면 플라즈몬 효과를 이용하기 위해서, 본 연구에서는 Ag 나노 입자를 형성된 ZnO seed층에 ZnO nanorods를 성장시켰다. 시료를 제작을 위해서 비교적 성장이 간단하고 저온성장이 가능한 화학적 합성방법을 이용하였다. Ag 나노입자가 형성된 ZnO seed층 제작을 위해서 먼저 Si 기판위에 RF magnetron 스퍼터를 이용하여 고진공, $N_2$ 분위기에서 일정한 두께로 증착을 하였으며, 이후 Ag 박막을 thermal evaporator로 10 nm 두께로 증착하였다. 그 다음, 크기가 다른 Ag 나노입자를 형성을 위해서 rapid thermal annealing (RTA)을 여러 가지 온도에서 수행하였다. 그리고 이러한 시료들를 이용하여, ZnO nanorods를 성장하기 위하여, $90-95^{\circ}$의 온도에서 zinc nitrate $Zn(NO_3)_2{\cdot}6H_2O$과 hexamethylentetramines (HMT)으로 혼합된 용액에 담가두어 ZnO nanorods를 성장시켰다. Ag 나노입자의 크기에 따라 ZnO nanorods의 구조와 형태에 대하여 어떠한 영향을 주는지를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, Ag와 ZnO의 성분분석과 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 그리고 표면 플라즈몬에 의한 영향에 대하여 조사하기 위해, ZnO nanorods와 Ag 나노입자가 형성된 ZnO nanorods를 UV-Vis-NIR spectrophotometer을 이용하여 흡수계수와 반사계수를 비교하여 측정하였으며. 태양전지의 성능향상을 수 있음을 이론적으로 계산하였다. 그리고 또한 photoluminescence (PL) 분석을 수행하여 ZnO nanorods의 구조에 대하여 Ag 나노입자의 영향에 대한 광특성을 측정하였다.

  • PDF

Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials

  • Thair Hussein Khazaalah;Iskandar Shahrim Mustafa ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4708-4714
    • /
    • 2022
  • The novelty in the present search, the Soda-Lime-Silica (SLS) glass waste to prepare free lead glass shielding was used in order to limit the accumulation of glass waste, which requires extensive time to decompose. This also saves on the consumption of pure SiO2, which is a finite resource. Furthermore, the combining of BaO with Bi2O3 into a glass network leads to increased optical properties and improved attenuation. The UV-Visible Spectrophotometer was used to investigate the optical properties and the radiation shielding properties were reported for current glass samples utilizing the PhysX/PDS online software. The optical property results indicate that when BaO content increases in glass structure, the Urbach energy ΔE, and refractive index n increases while the energy optical band gap Eopt decreases. The result of the metallisation criteria (M) revealed that the present glass samples are nonmetallic (insulators). Furthermore, the radiation shielding parameter findings suggest that when BaO was increased in the glass structure, the linear attenuation coefficient and effective atomic number (Zeff) rose. But the half-value layer HVL declined as the BaO concentration grew. According to the research, the glass samples are non-toxic, transparent to visible light, and efficient radiation shielding materials. The Ba5 sample is considered the best among all the samples due to its higher attenuation value and lower HVL and MFP values, which make it a suitable candidate as transparent glass shield shielding.

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (I): Cation Exchange Property of Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (I): 국내산 제올라이트의 양이온 교환 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.135-149
    • /
    • 2003
  • Domestic zeolite ores are mostly composed of Ca-type clinoptilolite, accompanying a little amounts of mordenite. However, other types of zeolite ores rich in ferrierite, heulandite, or mordenite are less commonly found. Based on the quantitative XRD analysis, zeolite contents are determined to be nearly 50∼90 wt%. Impurities (mostly > 10 wt%) in the zeolite ores chiefly consist of quartz, feldspar, smectite, and opal-CT. The determined CEC values ($CEC_{AA}$ ) of powdery samples (grain size: < 125 $\mu\textrm{m}$) of zeolite ores by the Ammonium Acetate method are mostly higher than 100 meq/100 g. Some zeolites from the Guryongpo area, corresponding to the clinoptilolite ore, are measured to be dominantly high in CEC values ranging 170∼190 meq/100 g. Cation exchange property of the zeolite ores varies greatly depending on the types or zeolite species present in the ores. Despite of the lower grade in zeolite content, the $CEC_{AA}$ of ferrierite ore is comparatively high. Compared to this, the $CEC_{AA }$ of heulandite ore is very low, though the zeolite ore exhibits the highest grade ranging up to about 90 wt%. In addition, the CEC values calculated theoretically from the framework composition of clinoptilolite-heulandite series are not consistent with those determined by the cation exchage experiment. The measured $CEC_{AA}$ of clinoptilolite ores are generally higher than those of heulandite ores. This may be due to the higher Ca abundance in exchangeable cation composition and the presence of probable stacking faults in heulandite. The variation of $CEC_{CEC}$ is roughly proportional, though not strictly compatible, to the zeolite contents in clinoptilolite ores. It seems to be caused by the fact that the $CEC_{AA}$ of clinoptilolite locally varies depending on crystal-chemical diversity, i. e., the variation in framework composition (Si/Al) and exchangeable cation composition (especially, the contents of Ca and K). In addition, the determined CEC values ($CEC_{MB}$ ) of zeolite ores by the Methylene Blue method are much higher than those calculated from smectite contents. It suggests a probable reaction of Methylene Blue ion ($C_{16}$ $H_{18}$ $N_3$S+) with larger-pore zeolites than clinoptlolite-heulandite series, i.e., ferrierite and mordenite as well as with smectite. This can be supported by the fact that the ferrierite ore accompanying little amount of smectite has the highest value in CE $C_{MB}$ .

Types and Characteristics of Fibrous Serpentine Minerals Occurred in Serpentinite in Hongseong and Gapyeong (홍성과 가평 사문암 내에서 섬유상으로 산출되는 사문석군 광물의 종류 및 특성)

  • Jeong, Hyewon;Kang, Serku;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Chrysotile is well known as a fibrous mineral in serpentinite by the previous studies in S. Korea. Previous studies in other countries showed that antigorite also occurred as asbestiform and harmful to humans. Therefore, the objective of this study was to investigate types and characteristics of fibrous serpentine minerals occurred in serpentinite in Hongseong, Chungnam and Gapyeong, Gyeonggi in S. Korea. XRD, SEM-EDS, PLM and EPMA mapping analyses were used to examine the occurrence and formation mechanism of serpentine minerals. Serpentinization partially occurred in amphibole-schist and calc-schist at two study sites, Hongseong, Chungnam and Gapyeong, Gyeonggi, respectively. Both chrysotile and antigorite occurred as a fibrous mineral at Hongseong site, but chrysotile occurred as a fibrous mineral at Gapyeong site. Based on PLM analysis with dispersion staining, the chrysotile was observed horizontally magenta and vertically blue colors. The antigorite appeared as horizontally gold to golden magenta and vertically blue magenta colors under central stop dispersion staining objective(DSO). PLM and SEM analyses showed the fibrous minerals were formed from plate form of serpentine minerals or by hydrothermal alternation of primary minerals. The EPMA mapping showed that Mg contents in chrysotile is relatively higher than that in antigorite while Si and O contents in antigorite is higher than them in chrysotile. However, more studies are necessary to know the exact variation in chemical composition of chrysotile and antigorite. These results indicate that even though asbestiform antigorite found associated with asbestos chrysotile in serpentinites, the fibrous antigorite can be distinguished from chrysotile by different dispersion staining colors.

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.

Thermoelectric Properties of Rapidly Solidified and extruded N-type $Bi_2Te_{2.85}Se_{0.15}$ alloy with extrusion die angle (급속응고법에 의한 $Bi_2Te_3$계 N형반도체 열전재료의 압출 다이각 변화에 따른 열전특성)

  • 권동진;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-29
    • /
    • 2001
  • 열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20$0^{\circ}C$)이하에서는 $Bi_2Te_3$계 재료, 중온영역(20$0^{\circ}C$~50$0^{\circ}C$)에서sms (Pb,Ge) Te계 재료, 고온영역(50$0^{\circ}C$~lOoo$^{\circ}C$)에서는 Si-Ge계 Fe Si계 재료가 이용되고 있다. 본 연구에서는 실온에서 성능지수가 높은 Bi_2(Te,Se)_3$에 대한 연구를 진행하였다. Bi_2(Te,Se)_3$계 열전재료는 기존의 공법인 Zone melting법을 이용하는 경우 성능지수가 높으나, 단위정이 Rhombohedral 구조파 기저면(basal plane)에 벽개성이 있는 관계로 재료의 적지 않은 손실과 가공상의 어려움이 있다. 또한 사료전체에 걸쳐 화학적으로 균질한 고용체를 얻는 것도 어려운 문제점으보 부각되고 있디 따라서 이와같은 문제점을 보완하기 위하여 용질원자의 편석감소, 고용도의 증가, 균일 고용체 형성, 결정립의 미세화등의 장점이 있는 급속응고법을 본 연구에 응용하였다. 본 연구에서는 위에서와 같은 급속응고의 장점과 대량 가공이 능늪한 연간압출공정을 이용하여 제조된 분말을 성형화 하였다. 특히 열간압출 가공에 있어서 압축다이 각 변화는 재료의 소성유동에 매우 중요한 역하을 하게되며, 이와 갇은 소성유동은 본 재료의 열전특성에 중요한 영향을 미치는 C 면 배양에 중요한 역할을 한 것으 로 기대된다. 이에 본 연구에서는 압출다이 각도 변화에 따른 미세조직변화와 이들 조직이 강도와 열전특성에 미치는 영향을 석하고자 한다. 압출재의 미세조직은 XRD(X Ray Diffraction), SEM(Scanning Electron Microscopy)으로 분석하였으며, 열전특성인 Seebeck계수($\alpha$)와 전기비저항( $\rho$ )은 열전측정장치로, 기계적 강도는 MTS장비를 이용하여 이루어졌다. 또한 압축다이각도 변화에 따른 결정방위 해석은 모노크로미터가 장착된 X RD장비감 이용하여 분석되었다.

  • PDF

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

Morphological and Skeletal Development and Larvae and Juvenile of Sebastes koreanus (Pisces: Scorpaenidae) (황해볼락(Sebastes koreanus) 자치어의 형태 및 골격발달)

  • Park, Jae Min;Cho, Jae Kwon;Han, Hyun;Han, Kyeong Ho
    • Korean Journal of Ichthyology
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • The morphological and skeletal development and larvae and juvenile of Sebastes koreanus were studied. The Sebastes koreanus were caught at Yeosu-si, Jeolla-namdo from March in 2014. Larvae beared at water temperature of $13.5{\sim}15.5^{\circ}C$ (mean $14.5{\pm}0.1^{\circ}C$). The just beared larvae were 6.38~6.43mm(mean $6.40{\pm}0.02mm$, n=5) in total length and their mouth and anus were already opened. They began to eat rotifer and transformed to postlarva stage. 5 days after bearing postlarvae was measured 6.45~6.49 mm (mean $6.47{\pm}0.02mm$) in total length. 15 days after bearing postlarvae was measured 6.55~6.72mm(mean $6.64{\pm}0.08mm$) in total length. 60 days after bearing juvenile was measured 15.5~20.0 mm (mean $17.7{\pm}2.25mm$) in total length with dorsal fin rays X IV-12~13; anal fin rays III-7; caudal fin rays 16.