• Title/Summary/Keyword: $SiHCl_3$

Search Result 111, Processing Time 0.027 seconds

Selective chemical vapor deposition of $\beta$-SiC on Si substrate using hexamethyldisilane/HCl/$H_{2}$ gas system (Hexamethyldisilane/HCl/$H_{2}$ gas system을 이용한 Si 기판에서 $\beta$-SiC의 선택적 화학기상증착)

  • 양원재;김성진;정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Using a single precursor of hexamethyldisilane $(Si_{2}(CH_{3})_{6})$, $\beta$-SiC film was successfully deposited on a Si substrate at $1100^{\circ}C$ by a chemical vapor deposition method. Selectivity of SiC deposition on a Si substrate partially covered with a masking material was investigated by introducing HCl gas into hexamethyldisilane/$H_{2}$ gas system during the deposition. The schedule of the precursor and HCl gas flows was modified so that the selectivity of SiC deposition between a Si substrate and a mask material should be improved. It was confirmed that the selectivity of SiC deposition was improved by introducing HCl gas. Also, the pulse gas flow technique was effective to enhance the selectivity.

  • PDF

Microstructure and Properties of Organic-Inorganic Hybrids(PDMS/SiO$_2$) Through Variations in Sol-Gel Processing (졸-겔공정의 변수조절을 통해 제조된 유기-무기복합체 (PDMS/SiO$_2$)의 미세구조와 특성)

  • Eun, Hui-Tae;Hwang, Jin-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.94-103
    • /
    • 2001
  • SiO$_2$ and PDMS/SiO$_2$ xerogels which are derived PDMS into TEOS have been synthesized by sol-gel process and controlled pore size and distribution through 2 step acid/base catalyzed processes using HCI and NH$_4$OH as a catalyst. In HCl catalyzed SiO$_2$ and PDMS/SiO$_2$ xerogels, pH and gellation time of xerogel were 2.3~2.5 and 12~13 days, respectively, and the shape of xerogel was identified to pellet type and column type. Under acidic condition of final reaction solution, the hydrolysis rate is accelerating, resulting in long gel times. The shape of xerogel is pellet type. In contrast, under less acidic condition, the condensation rate is accelerating, resulting in shorter gel times and the shape of xerogel is column type. The surface area and average Pore size were changed 400$\rightarrow$600($\m^2$/g) and 15$\rightarrow$28$\AA$, respectively, depending to the increase of the mole ratio of HCl/NH$_4$OH, and represented uniform pore size distribution. It is that all the alkoxide groups are hydrolyzed by HCl after the first step and the condensation rate is enhanced by NH$_4$OH. The regular backbone structures of silica are formed at low temperature and the uniform pores are produced by heat treatment.

  • PDF

A Study to Recover Si from End-of-Life Solar Cells using Ultrasonic Cleaning Method (초음파 세척법을 이용한 사용 후 태양광 셀로부터 Si 회수 연구)

  • Lee, Dong-Hun;Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.38-48
    • /
    • 2021
  • In this study, we determine the optimal process conditions for selectively recovering Si from a solar cell surface by removal of impurities (Al, Zn, Ag, etc.). To selectively recover Si from solar cells, leaching is performed using HCl solution and an ultrasonic cleaner. After leaching, the solar cells are washed using distilled water and dried in an oven. Decompression filtration is performed on the HCl solution, and ICP-OES (Inductively Coupled Plasma Optical Emission spectroscopy) full scan analysis is performed on the filtered solution. Furthermore, XRD (X-ray powder diffraction), XRF (X-ray fluorescence), and ICP-OES are performed on the dried solar cells after crushing, and the purity and recovery rate of Si are obtained. In this experiment, the concentration of acid solution, reaction temperature, reaction time, and ultrasonic intensity are considered as variables. The results show that the optimal process conditions for the selective recovery of Si from the solar cells are as follows: the concentration of acid solution = 3 M HCl, reaction temperature = 60℃, reaction time = 120 min, and ultrasonic intensity = 150 W. Further, the Si purity and recovery rate are 99.85 and 99.24%, respectively.

CuO/3Al$_2$O$_3$ㆍ2SiO$_2$, 촉매담지 세라믹 캔들필터를 이용한 먼지/NOx/SOx/HCl 제거기술

  • 문수호;홍민선;이재춘;이동섭
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-143
    • /
    • 2004
  • Simultaneous removal technology of particulate/NOx/SOx/HCl using CuO/3Al$_2$O$_3$ㆍ2SiO$_2$catalyst impregnated ceramic candle filters is an advanced air pollution process and provides significantly to reduce hazardous gases emitted from coal-fired power plant. This process uses a high-temperature catalytic filter for integrating SOx and HCl reduction through injection an alkali sorbent (such as hydrated lime or sodium bicarbonate), NOx removal through ammonia injection and selective catalytic reduction (SCR), and particulate collection on the catalytic filter surface. The advantages of the process include : compact integration of the emission control technologies into a single component; easy handling of dry sorbent and by-product; and improved SCR catalytic life due to lowered SOx, HCl and particulate levels. CuO/3Al$_2$O$_3$ㆍ2SiO$_2$ catalyst impregnated ceramic candle filters showed a possibility of simultaneous treatment from results which have ascertained high removal efficiency at various combined gases conditions, and in pilot plant test for 3 months, NO conversion was showed 90% over.

Analysis of Trace Trichlorosilane in High Purity Silicon Tetrachloride by Near-IR Spectroscopy (근적외선 분광법을 이용한 고순도 SiCI4 중의 미량 불순물 SiHCI3의 분석)

  • Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.87-90
    • /
    • 2002
  • The content of $SiHCl_3$ as a trace impurity in $SiCl_4$ was analyzed by Near IR spectrophotometer with optical fiber. The strong absorption bands of $5345{\sim}5116cm^{-1}$ and $4848{\sim}4349cm^{-1}$ were used for analysis of $SiHCl_3$, and the detection limit of impurity $SiCl_3$ was appeared to be 0.005 % in the spectrum. The quantitative analysis by Near IR spectrophotometry showed the analytical possibility of trace impurity in $SiCl_4$ without sample pre-treatment not only in the laboratory but also in the field.

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • Lee, Chang Yeop;Han, Jun Su;Yu, Bok Ryeol;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Using HClO4-SiO2 as a Heterogeneous and Recyclable Catalyst

  • Maheswara, Muchchintala;Oh, Sang-Hyun;Kim, Ke-Tack;Do, Jung-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1752-1754
    • /
    • 2008
  • A simple and efficient synthesis of 3,4-dihydropyrimidinones or thiones is described, using silica-supported perchloric acid ($HClO_4-SiO_2$) as a heterogeneous catalyst from an aldehyde, $\beta$-dicarbonyl compound, and urea or thiourea under solvent-free conditions. Compared to the classical Biginelli reactions, this method consistently has the advantage of high yields, short reaction time, easy separation, and tolerance towards various functional groups.

A Study of Acid Leaching for Metallurgical Grade Silicon Manufacturing Improved Purity (순도가 향상된 금속급 실리콘 제조를 위한 산침출 연구)

  • Um, Myeong-Heon;Ha, Beom-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.118-123
    • /
    • 2017
  • To manufacture MG-Si (Metallurgical grade silicon) for use in various industries, Acid leaching experiments were performed to remove aluminum (Al) and iron (Fe), which are the most common impurities found in the silicon raw material. The silicon raw material was reacted with five types of acids (HCl, HF, H2SO4, HNO3, H3PO4) at 1, 2, 4, and 6M; 1M HF showed the highest Al and Fe removal rates, 97.9% and 95.2%, respectively. HF, however, resulted in an 18% reduced yield due to the silicon corrosion properties. To minimize the yield reduction, 2M HCl, which has a second removal ratio result, was mixed with 1M HF and applied to the silicon raw material. The experiment was conducted to select the optimal conditions for the mixed solution, which were $80^{\circ}C$ and 2hr. Under the optimal conditions, the residual Al and Fe concentrations were 141 ppmw and 93 ppmw, respectively, and it very easy to produce MG-Si with 3N grade purity.

Dissolution Behavior of Plagioclase in HCl and KOH Solutions (염산과 수산화칼슘 수용액과의 반응에 의한 사장석의 용해 거동)

  • 현성필;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.71-81
    • /
    • 1996
  • Dissolution experiments were conducted to understand chemical nature of weathering of anorthosite from the Hadong area. Anorthosite and plagioclase from it were reacted with HCl or KOH solutions under various conditions concerning such as grain size, initial pH of solutions, and shaking Average composition of plagioclase used in the experiment was Na0.32Ca0.71Al1.71Si2.28O8.Under acidic conditions, solution pH increases rapidly in the initial stage and then gradually to reach palteau. Shaking agitates the reaction rate in the initial stage but does not affect after the system reached steady state. Ca and si concentrations show rapid increase and then gradual increase. Al concentration increases rapidly in the early stage and then decreases. Later decrease was interpreted as the precipitation of an Al-bearing material. Different dissolution rates of different constituents of plagioclase together the with precipitation of al-bearing material might be responsible for the non-stoichiometric dissolution of plagioclase.X-ray diffraction analyses on anorthosite before and after dissolution experiment show dissolution rates differ with different lattice planes of plagioclase. It suggests the crystallographic control on dissolution reaction. X-ray photoelectron spectroscopic result shows that the average composition of plagioclase surface reacted with HCL of initial pH 1.97 for 2000 hours is Na0.20Ca0.26Al1.7Si2.3O8. It means that Na- and Ca-depleted H-feldspar is developed without Al-depleted layer on the surface of plagioclase by reaction with HCl and that dissolution reaction takes place sparsely on the surface of plagioclase. Al and Si are dissolved preferentially over Ca from anorthosite powder in KHO solution. Reaction of acid-reacted anorthosite with KOH solution shows the same Si dissolution behavior as in the fresh anorthosite. This indicates that the Al-depleted and Si-enriched layer does not build up on the acid-reacted surface.

  • PDF