• Title/Summary/Keyword: $S_N1$ mechanism

Search Result 718, Processing Time 0.022 seconds

Kinetic Study of Macrocyclic Ligand-Metal Ion Complexes (거대고리 리간드와 금속이온과의 착물에 관한 반응속도론적 연구)

  • Moon-Hwan Cho;Jin-Ho Kim;Hyu-Bum Park;Si-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.366-370
    • /
    • 1989
  • A new macrocyclic ligand 1,15,18-triaza-3,4;12,13-dibenzo-5,8,11-cycloeicosane (NdienOdien$H_4$ = $N_3O_3$) has been synthesized and identified by element analysis, NMR and IR spectrophotometry. Stepwise protonation constants of ligand are determined by potentiometry in 95% methanol solution(I = 0.1 mol $dm^{-3}$, $Me_4$NCl). log $K_1$;log $K_2$;log $K_3$ = 9.1;8.1;3.6.The kinetics of the acid-promoted dissociation reactions of complex cations of nickel(II) and copper(III) with NdienOdien and NdienOen macrocyclic ligands having, respectively, 17 and 20 ring members, have been studied spectrophotometrically in HCl$O_4$ NaCl$O_4$ aqueous solutions. From the temperature effect on kinetic constant ($k_{obs}$), the parameters of activation(${\Delta}H^{\neq}$, ${\Delta}S^{\neq}$) of dissociation reaction for $ML^{2+}$ with $H^+$ ion have been determined. We have proposed the possible mechanism of the reaction from the data obtained.

  • PDF

Effects of Hepcidin Hormone on the Gene Expression of Ferroportin and Divalent Metal Transporter 1 in Caco-2 Cells and J774 Cells (Caco-2 소장세포와 J774 대식세포에서 Hepcidin 호르몬이 철분 수송체 Ferroportin과 Divalent Metal Transporter 1의 유전자 발현에 미치는 영향)

  • Chae, Sun-Ju;Chung, Ja-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.721-728
    • /
    • 2008
  • Hepcidin is a peptide hormone produced by the liver, of which secretion is closely related to iron status in the body. However, little is known about the molecular mechanism(s) by which this peptide regulates body iron homeostasis. The purpose of this study was to determine the effects of hepcidin treatment within the physiological concentration range on the expressions of two different iron transporter proteins-ferroportin (FPN) and divalent metal transporter 1 (DMT1). Differentiated Caco-2 intestinal cells and macrophage J774 cells were treated with either synthetic hepcidin or hepcidin-rich fraction separated from human urine at the concentration of 10 nM and 100 nM for 24 hours. Results show that hepcidin treatment in differentiated Caco-2 cells or in J774 cells did not change the level of either FPN mRNA or DMT1 mRNA. On the other hand, hepcidin treatment at the dose of 100 nM significantly decreased the FPN protein levels and DMT1 protein levels in differentiated Caco-2 cells. Similarly, urinary hepcidin treatment (10 nM & 100 nM) also significantly decreased the levels of FPN and DMT1 proteins in J774 macrophage cells. These results showed that hepcidin might play an important role in the regulation of iron homeostasis by lowering the protein levels of iron transporter FPN and DMT1 both in enterocytes and in macrophage cells.

Comparison of Children's Body Weights and Eating Habits by Maternal Parenting Attitudes Perceived by Children (학령기 아동이 지각하는 어머니의 양육태도별 아동의 체중 및 식습관 비교)

  • Choe, Yun-Jung;Min, Hye-Sun
    • Korean Journal of Community Nutrition
    • /
    • v.14 no.1
    • /
    • pp.77-86
    • /
    • 2009
  • Effective parenting attitudes have been known to be associated with children's health practices including dietary intake and physical activity. The objective of this study is to compare children's body weights and eating habits by maternal parenting attitudes. Data were collected at school (N = 396; 4th and 5th grade students) using self-administered questionnaires on maternal parenting attitudes, eating habits and physical activity. Parenting attitudes were categorized as 1 of 4 parenting attitudes (overprotective, authoritarian, democratic, and neglectful) using affection and control median cut points. Children's body weights, frequency of breakfast, eating out and fastfood, and physical activity were compared by maternal parenting attitudes. Children's body weights were related with mother's employment status (p < 0.05) and parenting attitudes (p < 0.01). Children of unemployed mothers were more likely to be overweight. Children of neglectful mothers (p < 0.01) were more likely to be underweight, compared with children of mothers with other parenting attitudes. Since, unfortunately, the number of children of neglectful mothers was very limited in this study, we could hardly assess eating habits of children of neglectful mothers. Children of authoritarian mothers ate breakfast more regularly (p < 0.05), but ate snacks less regularly (p < 0.01). Children of democratic mothers ate fastfood less frequently (p < 0.01) and ate snacks more regularly (p < 0.01). Meanwhile, children of overprotective mothers ate breakfast less regularly (p < 0.05) and ate out less frequently (p < 0.01). However, maternal parenting attitudes were not related to children's physical activities. In conclusion, the maternal democratic parenting attitude was associated with healthy eating habits including regular snack time and less fastfood. On the other hand, the maternal neglectful parenting attitude was associated with high risk of children's underweight. Understanding the mechanism through which parenting attitude is related with underweight risk and healthy eating habits may lead to the development of better interventions.

Comprehension of Capsaicin for a Experimental Part of Physical Therapy (물리치료의 실험적 측면에 대한 Capsaicin의 이해)

  • Kim, Dong-Hyun;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.219-227
    • /
    • 2001
  • Capsaicin. a vanillyl amide(8-methy1-N-vanilly1-6-nonenamide) with a molecular weight of 305.42, was substance, interrupting the pain conducting pathway Until recently the neurotoxic effects of Capsaicin to adult animals were thought to be limited to the peripheral nervous system. But several reports suggest the possibility of central nervous system changes after Capsaicin administration to the adult rat. Capsaicin desensitization is defined as long lasting, reversible suppression of sensory neuron activity. How fast and for how long the desensitization develops is related to the dose and time of exposure to Capsaicin, and the interval between consecutive dosing. In the long term Capsaicin treatment can lead to morphological degeneration and changes in some small sensory neurons, predominantly unmyelinated C fiber afferent nerve fibers. Clinical interest has recently been roused by evidence that Capsaicin's desensitizing action may be of therapeutic value and that an endogenous Capsaicin-1 ike substance may exist. This study summarizes the fundamental knowledge(mechanism, receptors, et al of Capsaicin) of Capsaicin for physical therapists.

  • PDF

Global Histone H4 Acetylation of IGF1 and GH Genes in Lungs of Somatic Cell Cloned Calves

  • Zhang, L.;Wang, S.H.;Fan, B.L.;Dai, Y.P.;Fei, J.;Li, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1090-1094
    • /
    • 2006
  • Histone acetylation modification is one key mechanism in the regulation of gene activation. In this study, we investigated the global levels of histone H4 acetylation of insulin like growth factor I (IGF1) and growth hormone (GH) genes in the lungs of two somatic cell cloned calves. Data showed the levels of histone H4 acetylation of IGF1 and GH genes vary widely within different gene regions, and, in almost all regions of the two genes, acetylation levels are lower in the aberrant clone than in the normal clone. Thus we suggest that inefficient epigenetic reprogramming in the clone may affect the balance between acetylation and deacetylation, which will affect normal growth and development. These findings will also have implications for improvement of cloning success rates.

A Study on Photoreceptor by Using the Effect of Additives

  • Yu, Jin;Kim, Yeong Sun;Yu, Guk Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.709-715
    • /
    • 2001
  • We have been studied photosensitization mechanism's additive effect, of perylene 3,4,9,10-tetracarboxyl-diimide and X-phthalocyanine (charge generation materials), using the photochemical and photoelectrochemical approach. It was found that the photoreceptor on the excited state reacts with metal oxide, which creates the charge transfer on the interface of SnO2/electrolyte. In the electrode (X5P1) made of five X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, the cathodic photocurrent of X-phthalocyanine in the 400-600 nm region was increased by the addition of perylene 3,4,9,10-tetracarboxyldiimide. The maximum wavelength of fluorescence of perylene 3,4,9,10-tetracarboxyldiimide showed no dependence on the temperature. The addition of 4-dibenzylamino-2-methylbenzaldehyde diphenylhydrazone known as charge transport material was represented as decreasing photocurrent for X-phthalocyanine and perylene 3,4,9,10-tetracarboxyldiimide, respectively. In the electrode (X1P1) made of single X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, an anodic photocurrent of about 10.5 nA was generated by addition of hydroquinone at 550 nm. And the characteristic of photoinduced discharge was shown to decrease by a factor of 5 and the speed of dark decay was increased by a factor of 1.2.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

Inhibition of ERK1/2 Activation and Cytoskeleton Rearrangement by the Recombinant Protein of Plasminogen Kringle 5 (Plasminogen kringle 5 재조합 단백질에 의한 ERK1/2 활성화 및 세포골격 재배열 억제)

  • Ha, Jung-Min;Kim, Hyun-Kyung;Kim, Myoung-Rae;Joe, Young-Ae
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1199-1206
    • /
    • 2006
  • Plasminogen kringle 5 is a potent inhibitor of endothelial tell proliferation like an endogenous angiogenesis inhibitor, angiostatin consisting of plasminogen kringles 1-4. In this study, we produced the recombinant protein of plasminogen kringle 5 (PK5) employing an Pichia expression system and examined its. effect on~endothelial cell migration and its possible inhibitory mechanism. PK5 was expressed in Pichia pastoris GS115 by fusion of the cDNA spanning from Thr456 to Phe546 to the secretion signal sequence of a-factor prepro-peptide. After methanol induction, the secreted PK5 was purified by using S-spin column. SDS-PACE analysis of the purified protein showed one major band of approximately 10kDa. In in vitro migration assays, the purified protein inhibited dose-dependently the migration of human umbilical endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) with an $IC_{50}$ of approximately 500nM. Accordingly, it inhibited bfGF-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in HUVECs at 500nM. In addition, it also potently inhibited bFGF-induced cytoskeletal rearrangement of HUVECs. Thus, these results suggest that Pichia-produced PK5 effectively inhibits endothelial cell migration, in part by suppression of ERK1/2 activation and blocking cytoskeleton rearrangement.

4-(N-Methyl-N-nitrosamino)-1(3-pyridyl)-1-butanone(NNK) Restored the Cap-dependent Protein Translation Blocked by Rapamycin

  • Kim Jun-Sung;Park Jin Hong;Park Sung-Jin;Kim Hyun Woo;Hua Jin;Cho Hyun Sun;Hwang Soon Kyung;Chang Seung Hee;Tehrani Arash Minai;Cho Myung Haing
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.347-353
    • /
    • 2005
  • Eukaryotic initiation factor 4E (elF4E) is a key element for cap-dependent protein translation controlled by affinity between elF4E and 4E-binding protein 1 (4E-BP1). Rapamycin can also affect protein translation by regulating 4E-BP1 phosphorylation. Tobacco-specific nitrosamine, 4(N-methyl-N-nitrosamino )-1-(3-pyridyl)-1-butanone (NNK) is a strong lung carcinogen, but its precise lung cancer induction mechanism remains unknown. Relative roles of cap-dependent and -independent protein translation in terms of NNK-induced lung carcinogenesis were elucidated using normal human bronchial epithelial cells. NNK concentrations applied in this study did not decrease cell viability. Addition of NNK restored rapamycin-induced decrease of protein synthesis and rapamycin-induced phosphorylation of 4E-BP1, and increased expression levels of mTOR, ERK1/2, p70S6K, and Raf-1 in a concentration-dependent manner. NNK also caused perturbation of normal cell cycle progression. Taken together, NNK might cause toxicity through the combination of restoration of 4E-BP1 phosphorylation and increase of elF4E as well as mTOR protein expression, interruption of Raf1/ERK as well as the cyclin G-associated p53 network. Our data could be applied towards elucidation of the molecular basis for lung cancer treatment.

Molecular Mechanism of the Antiproliferative Effect by Ginseng Panaxynol on a Human Malignant Melanoma Cell Line, SK-MEL-1 (인체 흑색종 세포주 SK-MEL-1에 대한 인삼 panaxynol의 항증식 효과 기전)

  • Cho Hongkeun;Yu Su-Jin;Roh Joo Young;;Hwang Woo-Ik;Sohn Jeongwon
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.190-197
    • /
    • 1999
  • In this study, the molecular mechanism of the growth inhibitory effect of panaxynol was investigated in a human malignant melanoma cell line, SK-MEL-l. In the cell cycle analysis, panaxynol arrested cell cycle progression of SK-MEL-I at the G1 phase. Immunoblot analysis demonstrated that panaxynol increased $p21^{WAF1}$ and decreased cdc2 expression. Protein levels of pl6, p27, E2F-1, Rb, and p53 were not changed. Thus, the changes in expression levels of $p21^{WAF1}$ and cdc2 apparently mediate the cell cycle arrest caused by panaxynol. In addition, cycloheximide (CHX) partially reversed the growth inhibition by panaxynol, which suggested that new protein synthesis was required. On the other hand, LLnL, a proteasome inhibitor, increased antiproliferative effect of panaxynol. This may be due to stabilization of the protein(s) responsible for the growth inhibition such as $p21^{WAF1}$. In summary, these results demonstrate that panaxynol inhibits proliferation of SK-MEL-I by inducing cell cycle arrest at the G1 phase and the inhibitory effect is mediated by the increased level of $p21^{WAF1}$ as well as decreased cdc2 expression.

  • PDF