• Title/Summary/Keyword: $S_N1$ mechanism

Search Result 717, Processing Time 0.029 seconds

Nucleophilic Displacement at a Carbonyl Carbon Atom (ⅩⅢ). Methanolysis of Thiochloroformate in $CH_3OH-CH_3CN$ Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제13보). 메탄올-아세토니트릴 혼합용매에서 Thiochloroformate의 가메탄올 분해반응)

  • Sangmoo La;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.288-294
    • /
    • 1980
  • Methanolysis rate constants were determined for $CH_3O(CO)Cl,\;CH_3S(CO)Cl\;and\;CH_3S(CS)Cl\;in\;CH_3OH-CH_3CN$ mixtures. Results show that the rates are not predominantly influenced by the bulk solvent properties but are partly influenced by specific electrophilic solvation.Polarity of the solvent is not a dominant factor but it nevertheless plays a role in charge stabilization of the $S_N1$ like transition state. The methanolysis proceeds through $S_N1$ mechanism for $CH_3S(CS)Cl$ for which both specific solvation of leaving group by methanol and charge stabilization by a high dielectric medium are important, while for $CH_3O(CO)Cl\;methanolysis occurs\;via\;S_N2$ mechanism in which both of the solvent effects are unimportant.

  • PDF

Rate and Product Studies of 5-Dimethylamino-Naphthalene-1-Sulfonyl Chloride under Solvolytic Conditions

  • Koh, Han Joong;Kang, Suk Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2285-2289
    • /
    • 2014
  • The solvolysis rate constants of 5-dimethylamino-naphthalene-1-sulfonyl chloride ($(CH_3)_2NC_{10}H_6SO_2Cl$, 1) in 31 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and $Y_{Cl}$ solvent ionizing scale with sensitivity values of $0.96{\pm}0.09$ and $0.53{\pm}0.03$ for l and m, respectively; the correlation coefficient value was 0.955. These l and m values can be considered to support an $S_N2$ reaction pathway having a transition state (TS) structure similar to that of the benzenesulfonyl chloride reaction. This interpretation is further supported by the activation parameters, i.e., relatively small positive ${\Delta}H^{\neq}$ (12.0 to $15.9kcal{\cdot}mol^{-1}$) and large negative ${\Delta}S^{\neq}$ (-23.1 to $-36.3cal{\cdot}mol^{-1}{\cdot}K^{-1}$) values, and the solvent kinetic isotope effects (SKIEs, 1.34 to 1.88). Also, the selectivity values (S = 1.2 to 2.9) obtained in binary solvents are consistent with the proposed mechanism.

Nucleophilic Substitution Reaction of α-Methoxy-α-(trifluoromethyl)phenylacetyl Chloride in Alcohol-Water Mixtures

  • 구인선;이성인;안선경;양기열;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1451-1456
    • /
    • 1999
  • Solvolyses of α-methoxy-α-(trifluoromethyl)phenylacetyl chloride in H₂O, D₂O, CH₃OD, 50% D₂O-CH₃OD, and in aqueous binary mixtures of acetone, dioxane, ethanol and methanol are investigated at 25.0℃. The Grunwald-Winstein plots of first-order rate constants for α-methoxy- α-(trifluoromethyl)phenylacetyl chloride with $Y_{Cl}$ show a dispersion phenomenon. Solvent nucleophilicity N has been shown to give considerable im-provement when it is added as an 1N term to the original Grunwald-Winstein for the solvolyses of α-methoxy- α-(trifluoromethyl)phenylacetyl chloride. The dispersions in the Grunwald-Winstein correlations in the present studies are caused by solvent nucleophilicity. The magnitude of l and m values associated with a change of solvent composition predicts the associative $S_N2$ transition state. The kinetic solvent isotope effects determined in deuterated water and methanol are consistent with the proposed mechanism of the general base catalyzed associative $S_N2$ or $S_AN$ mechanism for the of α-methoxy- α-(trifluoromethyl)phenylacetyl chloride.

Kinetics and Hydrolysis Mechanism of Herbicidal N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide Derivatives (제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응 메카니즘)

  • Lee, Chan-Bog;Ryu, Jae-Wook;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.455-462
    • /
    • 1995
  • The new six herbicidal N-[(pyrimidin-2-yl)aminocarbonyl]-2-substituted-6-(1-hydroxy-2-fluoroethyl)benzenesulfonamide derivatives(S) were synthesized and rate constants for the hydrolysis of thier in the range of pH $1.0{\sim}10.0$ have been studied in 15%(v/v) aqueous acetonitrile solution at $45^{\circ}C$. From the basis of the results, pH-effect, solvent effect, ortho-substituent effect, thermodynamic parameters(${\Delta}H^{\neq}$ & ${\Delta}S^{\neq}$), pKa constant(4.80), rate equation, analysis of hydrolysis products(2-(1-hydroxy-2-fluoroethyl)benzenesulfonamide & 4,6-dimethoxyaminopyrimidine), it may be concluded that the general acid catalyzed hydrolysis through $A-S_E2$ mechanism and specific acid catalyzed hydrolysis through A-2 type(or $A_{AC}2$) mechanism proceeds via conjugate acid($SH^+$) and tetrahedral intermediate(I) below pH 8.0, whereas, above pH 9.0, the general base catalyzed hydrolysis by water molecules(B) through $(E_1)_{anion}$ mechanism proceeds via conjugate base(CB). In the range between $pH\;7.0{\sim}pH\;9.0$, these two reactions occur competitively.

  • PDF

Kinetics and Mechanism of Azidolysis of Y-Substituted Phenyl Benzoates

  • Um, Ik-Hwan;Kim, Eun-Hee;Han, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.580-584
    • /
    • 2008
  • Second-order rate constants (kN) have been measured spectrophotometrically for reactions of Y-substituted phenyl benzoates (1a-h) with azide ion (N3) in 80 mol % H2O/20 mol % DMSO at 25.0 0.1 oC. The Brnsted-type plot for the azidolysis exhibits a downward curvature, i.e., the slope (b lg) changes from 0.97 to 0.20 as the basicity of the leaving group decreases. The pKao (defined as the pKa at the center of the Brnsted curvature) is 4.8, which is practically identical to the pKa of the conjugate acid of N3 ion (4.73). Hammett plots correlated with s o and s constants exhibit highly scattered points for the azidolysis. On the contrary, the corresponding Yukawa-Tsuno plot results in an excellent linear correlation with r = 2.45 and r = 0.40, indicating that the leaving group departs in the rate-determining step. The curved Brnsted-type plot has been interpreted as a change in the rate-determining step in a stepwise mechanism. The microscopic rate constants (k1 and k2/k1 ratio) have been calculated for the azidolysis and found to be consistent with the proposed mechanism.

Theoretical Studies on the Cationic Polymerization Mechanism of Cyclic Acetals (산 촉매하의 Cyclic Acetals 공중합반응에 관한 분자궤도론적 연구)

  • Young-Gu Cheun;Jae-Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 1992
  • The cationic polymerization of cyclic acetals are investigated theoretically using the semiempirical MINDO/3, MNDO, and $AM_1$, methods. The nucleophilicity and basicity of cyclic acetals can be explained by the negative charge on oxygen atom of cyclic acetals. The reactivity of propagation in the polymerization of cyclic acetals can be represented by the positive charge on $C_2$ atom and the low LUMO energy of active species of cyclic acetals. The reactivity of 2-buthyl-1,3-dioxepane(2-Bu-DOP) of cyclic oxonium and opening carbenium ion form is expected computational stability of the oxonium ion by 5${\sim}$7kcal/mole favoring the carbenium ion. Owing to the rapid equilibrium of these cation forms and the reaction coordinate based on calculation that the reaction coordinate based on calculation that the chain growth $S_N1$ mechanism will be at least as fast as that for $S_N2$ mechanism.

  • PDF

Kinetics and Mechanism of Hydrolysis of Insecticidal Imidacloprid (살충성 Imidacloprid의 가수분해 반응 메카니즘)

  • Yu, Sung-Jae;Kang, Moon-Sung;Sung, Nack-Doo
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.53-57
    • /
    • 1997
  • The rate of hydrolysis of insecticidal 1-(6-chloro-3-pyridylmethyl) -2-nitro-iminoimidazolidine (common name; imidacloprid) have been investigated in 15%(v/v) aqueous dioxane at $45^{\circ}C$. From the kinetics and non-kinetics data such as pH-effect, solvent effect(m=0.04, n=0.30 IT m<${\Delta}H^{\neq}=16.14kcal{\cdot}mol^{-1}\;&\;{\Delta}S^{\neq}=-0.03e.u.$), rate equation ($k_{obs.}=4.56{\times}10^{-3}[OH^-]$) and analysis of hydrolysis product, 1-(6-chloro-3-pyridylmethyl-2)-imidazolidinon, the hydrolysis mechanism of imidacloprid is proposed that the specific base catalyzed hydrolysis($K_{OH^-}$) through nucleophilic addition-elimination ($Ad_N-E$) mechanism proceed via intermediate, 1-(6-chloro-3- pyridylmethyl)-2-hydroxy-2-imidazolidinylisonitraminate (I) and ${\beta}$-3-(6-chloro-3-pyridylmethyl)aminoethyl-1-nitrourea(III). And the half-life(t1/2) of hydrolytic degradation at pH 8.0 and $45^{\circ}C$ was about 4.5 months.

  • PDF

The Reactions of Substituted Benzyl Arenesulfonates with N,N-Dimethylaniline (II). Substituent Effects of Benzyl Substrates for Benzyl Arenesulfonates (置換 Benzyl Arenesulfonate 와 N,N-Dimethylanilines와의 反應 (第2報). 核置換 Benzyl Arenesulfonate의 置換基效果)

  • Yoh Soo Dong
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.240-245
    • /
    • 1975
  • Substituent effects of benzyl substrates for the reaction of substituted benzyl(Z) arenesulfonate(X) with dimethylanilines in (Y) acetone at $35^{circ}$ were studied. The interactions between Z and Y disappeared when changed from electron withdrawing group to releasing group in benzyl substrates. The disappearance of interactions between Z and Y infers change of mechanism from $S_N2 to S_N1$ in substituent Z.

  • PDF

Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl

  • Kang, Suk Jin;Koh, Han Joong
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.25-28
    • /
    • 2017
  • Solvolyses with the reaction center being the sulfur of 4-(chlorosulfonyl)biphenyl ($C_6H_5C_6H_4SO_2Cl$, 1) was studied under solvolytic conditions and the extended Grunwald-Winstein equation was applied. The thirty five kinds of solvents gave a reasonable extended Grunwald-Winstein plot with a correlation coefficient (R) of 0.940. The sensitivity values (l = 0.60 and m = 0.47) of 1 were smaller than those obtained for benzenesulfonyl chloride ($C_6H_5SO_2Cl$, 2; l = 1.10 and m = 0.61) proposed to undergo dissociative $S_N2$ mechanism. These l and m values for the solvolyses of 1 can be considered to support a $S_N2$ pathway with some ionization reaction. The activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, were determined and they are also in line with values expected for a bimolecular reaction. The kinetic solvent isotope effect (KSIE) of 1.26 is also in accord with a bimolecular mechanism, probably assisted by general-base catalysis.

Kinetics and Mechanism of the Hydrolysis of N-(p-Nitrophenyl)-benzohydrazonyl Azide Derivatives (N-(p-니트로페닐)-벤조히드라조닐아지드 유도체의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Nack-Do Sung;Ki-Sung Kwon;Tae-Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.150-157
    • /
    • 1978
  • The rate constants for the hydrolysis of the derivatives of N-(p-nitrophenyl)-benzohydrazonyl azide (p-$CH_3,\;p-CH_3O,\;p-NO_2$, p-Cl, p-Br) have been determined by UV spectrophotometry in 50% dioxane-water at $25^{\cicr}C$ and a rate equation which can be applied over wide pH range was obtained. Below pH 5, the rate of hydrolysis of hydrazonyl azides is accelerated by electron-donating group ($\rho$ = -0.47), whereas at the pH values greater than 7, the $\rho$-value is 0.68. The effect of salt, solvent, substituent and azide ion on the rate of hydrolysis are rationalized in terms of $S_N1$ and $S_N2$ mechanism; below pH 5, the hydrolysis proceed through $S_N1$, however, above pH 7, the hydrolysis is started by the attack of hydroxide ion and in the range of pH 5∼7, these two reactions occur competitively.

  • PDF