• Title/Summary/Keyword: $SO_4^{2-}$

Search Result 20,980, Processing Time 0.047 seconds

Changes in Ion Balance and Individual Ionic Contributions to EC Reading at Different Renewal Intervals of Nutrient Solution under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Peppers (Capsicum annum L. 'Fiesta') (EC 기준 파프리카 순환식 수경재배에서 양액 교체 주기에 따른 양액 중의 이온 균형 및 각 이온의 EC 기여도 변화)

  • Ahn, Tae-In;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • Individual ion concentrations and ionic contributions to EC reading in the circulated nutrient solution are the important factors to be considered for stable EC-based closed-loop soilless culture. This study was conducted to determine appropriate ion-analysis intervals of the circulated nutrient solutions based on ion concentration, ion balance, and ion electrical conductivity under different renewal intervals in EC-based nutrient control systems for sweet peppers (Capsicum annum L. 'Fiesta') in early growth stage. Average node numbers of the plants were 13 and 18 when the experiment started and finished, respectively, and three plants were grown in each rockwool slab. Four different renewal intervals of circulated nutrient solutions such as 1, 2, 3, and 4 weeks were used as treatment. Nutrient solutions were supplied to the plants based on integrated radiation. Drainage was collected into drain tanks after irrigation ended in the day and then mixed with fresh water until the EC reaches 2.69 $dS{\cdot}m^{-1}$. The replenished nutrient solution was supplied to the plants in the next day. Ion concentrations of the individual ions periodically analyzed in the circulated nutrient solutions showed no significant differences among the treatments during the experimental period. Ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $NO_3{^-}$, ${SO_4}^{2-}$, ${PO_4}^{3-}$, and $Cl^-$ varied within 5-8, 11-14, 2.0-2.7, 0.5-0.6, 14-19, 4-5, 1-4, and 0.3-0.5 $meq{\cdot}L^{-1}$, respectively. Ion balance showed a consistent tendency over all the treatments and especially $K^+$ : $Ca^{2+}$ and ${SO_4}^{2-}$ : ${PO_4}^{3-}$ played great roles in the cation and anion balances in the nutrient solutions, respectively. Activity coefficients of ions such as $K^+$, $NO_3{^-}$, and $H_2PO_4{^-}$ varied within 0.8-0.9 and those of $Ca^{2+}$, $Mg^{2+}$, ${SO_4}^{2-}$ varied within 0.5-0.6, showing little changes with time. Ionic contributions of $K^+$ and $NO_3{^-}$ to EC reading were the greatest followed by $Ca^{2+}$, ${SO_4}^{2-}$, and $Mg^{2+}$ in the order. From the results, we thought that allowable ranges in ion concentration, ion balance, and subsequent individual ionic contributions to EC reading would be obtained within 4-week renewal interval of nutrient solution in EC-based closed-loop soilless culture for sweet pepper plants.

Effect of pH of Aluminum Hydroxides Gel Obtained by Hydrolysis of Al2(SO4)3 Solution on Crystal Growth of α−Al2O3 (Al2(SO4)3 용액의 가수분해에 의해 얻어진 Aluminum Hydroxides Gel의 pH가 판상 α−Al2O3의 결정성장에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Han, Myung-Wan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.562-567
    • /
    • 2007
  • To precipitate the complex gels of the pH 6, 7, 8, 9 included in a flux and an aluminum hydroxides gel, an aqueous solution of a mixture of $Na_2CO_3\;and\;Na_2PO_4{\cdot}12H_2O$ was added with stirring in an aqueous solution of a mixture of $Al_2(SO_4){_3}{\cdot}18H_2O,\;Na_2SO_4\;and\;K_2SO_4$, and then the complex gels were aged in 20 h at $90^{\circ}C$. As the hydrolysis pH changed, it had an effect on the physical properties such as the crystal structure, crystal morphology and a phase transition temperature of the AlO(OH) gel, and also on the crystal structure, crystal morphology, particle size and particle size distribution of the ${\alpha}-Al_2O_3$ platelets prepared by molten-salt precipitation. Also, in this study, the complex gels were crystallized at $1,200^{\circ}C$ and thereafter dried at $110^{\circ}C$, and then it was investigated to effect of the hydrolysis pH on the crystal structure, morphology and particle size distribution of the ${\alpha}-Al_2O_3$ platelets crystals using XRD, DTA, SEM and particle size analyzer.

Damage Characteristics of Metal Materials According to the SO2 Concentration (이산화황 농도에 따른 금속시편의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Shin, Eun Jeong;Lee, Sun Myung
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.176-187
    • /
    • 2013
  • A study has been carried out on metal materials in order to identify the quantitative relation between the concentration and damage characteristics after evaluation of the damage characteristics according to the $SO_2$ concentration. The prepared metal samples, which were categorized according to the material (silver, copper, iron, lead, brass) were exposed to 0.01, 0.12, 1, 10, 100, 1,000, and 5,000ppm of $SO_2$ for 24 hours and the optical, physical, chemical deterioration rates both before and after testing were evaluated. The results showed optical deterioration, a loss of gloss on silver specimen with $SO_2$ 100ppm, an increase of color difference on brass, iron, copper and lead specimens with $SO_2$ 5,000ppm, as well as physical changes such as an increase of thickness and corrosion rate on iron sample with $SO_2$ 5,000ppm. In the case of chemical changes such as an increase sulfate ion ($SO{_4}^{2-}$) concentration and decrease of pH on iron and brass specimens were identified. These results suggest that $SO_2$ 100ppm caused clear optical deterioration on some metals such as silver and physicochemical and optical deterioration were identified at $SO_2$ 5,000ppm regardless of metal type. Also, It was concluded that iron and brass are the most susceptible of the metal specimens to $SO_2$.

Sulfating Reaction of Coal Fly Ash and Microwave Extraction of Aluminum Ions (석탄회의 황산화반응과 알루미늄이온의 마이크로파 추출)

  • 박영증;박영민;양태영;윤석영;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.897-901
    • /
    • 2003
  • The sulfating reaction of coal fly ash with ammonium sulfate and the microwave extraction of aluminum ions from the resultant materials using sulfuric acid have been investigated. The (NH$_4$)$_3$Al(SO$_4$)$_3$ formed by the reaction of coal fly ash and ammonium sulfate decomposed to NH$_4$Al(SO$_4$)$_2$ at $\geq$ 350$^{\circ}C$. The maximum efficiency of aluminum ions extracted from the sulfating reaction product (400$^{\circ}C$, 120 min) by microwave heating (90$^{\circ}C$, 240 min) using 1 M H$_2$SO$_4$ was 84% (based on Al content in coal fly ash) but 77% by conventional heating at same condition.

The Study on Secondary Pollutants of $PM_{10}$ in Pocheon (포천지역에서 측정한 $PM_{10}$중 2차 생성입자에 관한 연구)

  • Park Tae-Sool
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.9-20
    • /
    • 2005
  • The purpose of the study was characteristics of secondary pollutants of $PM_{10}$ collected in pocheon between August 2002 and June 2003. The ambient concentrations of $PM_{10}$ mass, 9 water-soluble anions and cations, and 13 bulk composition trace elements were determined from filter samples collected by $PM_{10}$ high volume air sampler(UV-15H, Graseby-Anderson Co., USA). During this period average $PM_{10}$ mass concentration was $83.8{\mu}g/m^3(49.8{\mu}g/m^3\~111.6{\mu}g/m^3)$ in Pocheon. Mechanism for transformation of secondary pollutants by soluble ion components is divided into two categories; $NaNO_3$ type by the reaction of sea salt and $HNO_3$ in the atmosphere, and nitrate salt or phosphate salt type such as $(NH_4)_2SO_4,\;NH_4NaSO_4,\;and\;(NH_4)_2SO_4(2NH_4O_3)$.

Fabrication of $CaSO_4$ : Tm, $CaSO_4$ : Tm-PTFE TLD Radiation Sensors and Its Characteristics ($CaSO_4$ : Tm, $CaSO_4$ : Tm-PTFE TLD 소자의 제작과 특성에 관한 연구)

  • Park, Myeong-Hwan;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.16 no.1
    • /
    • pp.107-115
    • /
    • 1993
  • In this study, to develop highly sensitive radiation sensors, $CaSO_4$ : Tm phosphors and its disc-type TLD elements embedded PTFE(polytetrafluoroethylene) are fabricated. The highest sensitivity of $CaSO_4$ : Tm phosphors is obtained when phosphors have been doped with 0.5mol % Tm and sintered in atmosphere at $600^{\circ}C$ for two hours. Fabricated disc-type elements are made from a homogeneous mixture of phosphors and PTFE powder. They are first cold-pressed and then polymerized at $370^{\circ}C$ in air for one hour. The dose dependence of the prepared $CaSO_4$ : Tm TLD radiation sensors is linear within the range of $100{\mu}Gy{\sim}10Gy$ for X-rays and ${\gamma}-rays$. The response of $CaSO_4$ : Tm to 30keV X-rays is ten times higher than that of 1.25MeV $^{60}Co\;{\gamma}-rays$. The fading rate of the main peak is about 2% per a month. The spectral peaks of TL emission spectrum are at about 350nm and 475nm. The $CaSO_4$ : Tm TLD radiation sensors prepared in this work may be used as radiation dosimeter for personal and environmental monitoring because of their high sensitivity and little fading.

  • PDF

The Effects of $NO_2$ and $SO_2$ Gas on the Paper and the Textile Cultural Properties (지류.섬유질 유물에 대한 대기유해가스($SO_2$, $NO_2$)의 영향)

  • Lee, Kyu-Shik;Han, Sung-Hee
    • 보존과학연구
    • /
    • s.17
    • /
    • pp.65-99
    • /
    • 1996
  • We exanmined the each effect of $NO_2$ and $SO_2$gas, the maincomponets of air pollutants, on the deterioration of 6 organic materials with Gasexposure cabinet. The organic materials were used 2 kind of papers(Korean paper, Oldbook paper) and 4 kind of textiles (Cotton, Silk, Hemp, ramie) in gas exposure experiments. In order to know how to change of physical conditions, the materials were exposed to 2000, 1000 ppm. h of $SO_2$dose, to 100 ppm. h of $NO_2$ dose at 65% RH. The color difference, tensile strength, elongation coeffient, mass reduction and fabric status of each materials were discussed the following below.1. The color difference of cotton and hemp was larger than that of silk and ramie in the presence of $SO_2$ gas. and the color difference of korean paper was less than that of the textile materials in the presence of $SO_2$ gas.2. The tensile strength of cotton fell suddenly at 100ppm.h of $SO_2$ dose and even became 56% of the unexposed cotton.3. The weight of 6 materials began to decrease in the presence of $SO_2$ gas.4. The tensile strength and elongation of the materials tended to decrease at 12.5ppm.h of $NO_2$ especially silk was the strongest tendency to decrease.5. Cotton, hemp and ramie were influenced by $SO_2$ gas more than by $NO_2$, but silk were influenced by $NO_2$ more thang by $SO_2$ at 10ppm.h of each noxious gas.

  • PDF

Phase Separation Characteristics via Bunsen Reaction in Sulfur-Iodine Thermochemical Hydrogen Production Process (SI 열화학 수소 제조 공정에서 분젠 반응을 통한 상 분리 특성)

  • Lee, Kwang-Jin;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.386-393
    • /
    • 2008
  • The Sulfur-iodine(SI) thermochemical cycle is one of the most promising methods for massive hydrogen production. For the purpose of continuous operation of SI cycle, phase separation characteristics into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) were directly investigated via Bunsen reaction. The experiments for Bunsen reaction were carried out in the temperature range, from 298 to 333 K, and in the $I_2/H_2O$ molar ratio of $0.109{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the results, solubility of $SO_2$, decreased with increasing the temperature, had considerable influence on the global composition in the Bunsen reaction system. The amounts of impurity in each phase(HI and $I_2$ in $H_2SO_4$-rich phase and $H_2SO_4$ in $HI_x$-rich phase) were decreased with increasing $H_2SO_4$ molar ratio and temperature. To control the amounts of impurity in $HI_x$-rich phase, temperature is a factor more important than $I_2/H2_O$ molar ratio. On the other hand, the affinity between $HI_x$ and $H_2O$ was increased with increasing $I_2/H2_O$molar ratio.

The Direct Dissolution of Ion-Exchange Resin by Fenton's Reagent (펜톤시약을 이용한 이온교환수지의 직접분해)

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.85-90
    • /
    • 2007
  • Fenton's Reagent is applied to directly dissolve the cation-exchange resin, IRN-77. The characteristics of the experimental procedure is to dry the resin first and $FeSO_4$ solution is completely absorbed into the resin, and then $H_2O_2$ is introduced later for an effective reaction between the reagents within the resin. An a characteristic of the dissolution, the lag time is needed for about 1 hour until the main reaction is occurred, which was more affected with the less concentration of $FeSO_4$ and the less initial dose of $H_2O_2$. The dose of $H_2O_2$ was equally divided into the early stage and the later stage after the initial reaction to provide an effective and safe reaction condition. The optimum conditions is appeared that the concentration of $FeSO_4$ is 0.9M and the dose of 15% $H_2O_2$ solution is 6-7 volume for the dissolution of unit weight of IRN-77. The effect of the heating on the lag time was checked and the time could be reduced within 5 minutes at $50^{\circ}C$, which is a relatively low temperature. The large amount of the resin, 5g and 10g, was also completely decomposed by increasing the dose of $H_2O_2$ to 9-10 volume ratio.

  • PDF