Phase Separation Characteristics via Bunsen Reaction in Sulfur-Iodine Thermochemical Hydrogen Production Process

SI 열화학 수소 제조 공정에서 분젠 반응을 통한 상 분리 특성

  • Lee, Kwang-Jin (Department of Fine Chemical Engineering and Chemistry, BK21-E2M, Chungnam National Univ.) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Chemistry, BK21-E2M, Chungnam National Univ.) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Korea Institute of Energy Research)
  • 이광진 (충남대학교 공과대학 정밀공업화학과, BK21-에너지환경소재사업단) ;
  • 김영호 (충남대학교 공과대학 정밀공업화학과, BK21-에너지환경소재사업단) ;
  • 박주식 (한국에너지기술연구원) ;
  • 배기광 (한국에너지기술연구원)
  • Published : 2008.10.30

Abstract

The Sulfur-iodine(SI) thermochemical cycle is one of the most promising methods for massive hydrogen production. For the purpose of continuous operation of SI cycle, phase separation characteristics into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) were directly investigated via Bunsen reaction. The experiments for Bunsen reaction were carried out in the temperature range, from 298 to 333 K, and in the $I_2/H_2O$ molar ratio of $0.109{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the results, solubility of $SO_2$, decreased with increasing the temperature, had considerable influence on the global composition in the Bunsen reaction system. The amounts of impurity in each phase(HI and $I_2$ in $H_2SO_4$-rich phase and $H_2SO_4$ in $HI_x$-rich phase) were decreased with increasing $H_2SO_4$ molar ratio and temperature. To control the amounts of impurity in $HI_x$-rich phase, temperature is a factor more important than $I_2/H2_O$ molar ratio. On the other hand, the affinity between $HI_x$ and $H_2O$ was increased with increasing $I_2/H2_O$molar ratio.

Keywords

References

  1. J. H. Norman, G. E. Besenbruch, and D. R. O'keefe, "Thermochemical water-splitting for hydrogen production", GRI-80/0105, Gas Research Institute, 1981
  2. J. H. Norman, G. E. Besenbruch, L. C. Brown, D. R. O'Keefe, and C. L. Allen, "Thermochemical water-splitting cycle: bench-scale investigations and process engineering", GA-A 16713, 1982
  3. J. E. Funk, "Thermochemical hydrogen production: past and present", Int. J. Hydrogen Energy, Vol. 26, 2001, pp. 185-190 https://doi.org/10.1016/S0360-3199(00)00062-8
  4. K. Onuki, H. Nakajima, I. Ioka, M. Futakawa, and S. Shimizu, "IS process for thermochemical hydrogen production", JAERI Review 94-006, 1994
  5. S. Kasahara, G. J. Hwang, H. Nakajima, H. S. Choi, K. Onuki, and M. Nomura, "Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water", J. Chem. Eng. Japan, Vol. 36, 2003, pp. 887-899 https://doi.org/10.1252/jcej.36.887
  6. S. Kasahara, S. Kubo, K. Onuki, and M. Nomura, "Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process", Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 579-587 https://doi.org/10.1016/j.ijhydene.2003.08.005
  7. S. Goldstein, J. M. Borgard, and X. Vitart, "Upper bound and best estimate of the efficiency of the iodine sulfur cycle", Int. J. Hydrogen Energy, Vol. 30, 2005, pp. 619-626 https://doi.org/10.1016/j.ijhydene.2004.06.005
  8. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, and K. Onuki, "A demonstration study on a closed cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process", Nucl. Eng. Des., Vol. 233, 2004, pp. 347-354 https://doi.org/10.1016/j.nucengdes.2004.08.025
  9. M. Sakurai, H. Nakajima, K. Onuki. K. Ikenoya, and S. Shimizu, "Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process. Int. J. Hydrogen Energy, Vol. 24, 1999, pp. 603-612 https://doi.org/10.1016/S0360-3199(98)00119-0
  10. M. Sakurai, H. Nakajima, K. Onuki, and S. Shimizu, "Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process", Int. J. Hydrogen Energy, Vol. 25, 2000, pp. 605-611 https://doi.org/10.1016/S0360-3199(99)00078-6
  11. M. Sakurai, H. Nakajima, R. Amir, K. Onuki, and S. Shimizu, "Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process. Int. J. Hydrogen Energy, Vol. 25, 2000, pp. 613-619 https://doi.org/10.1016/S0360-3199(99)00074-9
  12. A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbarossa, P. Tarquini, and S. Sau, "Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle. Int. J. Hydrogen Energy, Vol. 32, 2007, pp. 531-536 https://doi.org/10.1016/j.ijhydene.2006.08.015
  13. 강영한, 류재춘, 박주식, 황갑진, 이상호, 배기광, 김영호, "요오드-황 열화학 수소 제조를 위한 분젠 반응 공정 연구", 화학공학, Vol. 44, No. 1, 2006, pp. 410-416
  14. 이동희, 이광진, 강영한, 김영호, 박주식, 황갑진, 배기광, "Iodine-Sulfur 수소 제조 공정에서 $H_2SO_4-HI-H_2O-I_2$ 계의 고온 상 분리", 한국수소 및 신에너지학회 논문집, Vol. 17, No. 4, 2006, pp. 395-402
  15. 이광진, 안승혁, 김영호, 박주식, 배기광, "황-요오드 열화학 수소 제조 공정에서 분젠 반응과 상 분리 비교", 한국수소 및 신에너지학회 논문집, Vol. 19, No. 2, 2008, pp. 111-117
  16. http://en.wikipedia.org/wiki/SO2
  17. M. Windholz, S. Budacari, R. R. Blumetti, and E. S. Otterbein, "The merck index", 10th ed, Merck & Co., Inc., New Jersey. 1983, p. 1288
  18. N. N. Greenwood and A. Earnshaw, "Chemistry of the elements", 2nd ed., Butterworth-Heinemann, London, 1997, pp. 698-701
  19. V. T. Calabrese and A. Khan, "Polyiodine and polyiodide species in an aqueous solution of iodine + KI: theoretical and experimental studies", J. Phys. Chem, A, Vol. 104, 2000, pp. 1287-1292 https://doi.org/10.1021/jp992847r