• Title/Summary/Keyword: $SO_2$ adsorption performance

Search Result 41, Processing Time 0.031 seconds

SO2 Adsorption Characteristics of PAN-based Activated Carbon Fiber Impregnated with Palladium and Gold Nanoparticles (팔라듐과 금 나노입자를 첨착한 PAN계 활성탄소섬유의 SO2 흡착특성)

  • Lee, Jin-Jae;Jun, Moon-Gue;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.467-474
    • /
    • 2007
  • The palladium and gold nanoparticles containing PAN-based active carbon fiber (ACF) with a high specific surface area were prepared. Using the BET, TEM, FE-SEM, and XPS, their specific surface area and pore volume, pore structure, and the change in surface oxygen groups with time were analyzed and $SO_2$ adsorption performances were investigated. Because of the impregnating process, the micropore volume was mostly decreased from 95.5% to 30.5~43.7% compared with the total pore volume. And the change in surface oxygen groups with time was higher for the metal salt than the nanoparticles. Also, $SO_2$ breakthrough time of PAN-ACFs impregnated with Au nanoparticles and metal salts did not change compared with that of the non-impregnated PAN-ACF. But the PAN-ACF impregnated with Pd nanoparticles (100 ppm) showed good $SO_2$ adsorption performance as the breakthrough time of 880 sec. These results indicated that the $SO_2$ adsorption performance depended on the change in surface oxygen groups with time and the moderate impregnation of Pd nanoparticles on the PAN-ACF caused the increase in the $SO_2$ adsorption performance by a catalytic action.

Adsorption of Azocarmine G dye on H2SO4-modified acacia sawdust

  • Celal Duran;Sengul Tugba Ozeken;Aslihan Yilmaz Camoglu;Duygu Ozdes
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Presence of hazardous dyes in water cause considerable risks to the human health and environment due to their potential toxicity and ecological disruptions. Therefore, in the present research, to suggest an alternative method for the retention of toxic Azocarmine G (ACG) dye from aqueous media, natural and H2SO4-modified acacia sawdust were performed for the first time as low-cost and efficient adsorbents. Based on batch experiments, it was determined that the best conditions for the developed dye retention process were an initial pH of 2.0 and an equilibrium time of 240 min. Analysis of the data using both pseudo-first order and pseudo-second order kinetic models showed that the retention of ACG onto the adsorbents predominantly occurred through chemical adsorption. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were employed to provide insights into the interaction between the adsorbate and adsorbent and the mechanism of the adsorption process. Maximum monolayer adsorption capacities of natural and H2SO4-modified acacia sawdust were determined as 28.01 and 64.90 mg g-1, respectively by Langmuir isotherm model. Results of the study clearly indicated that the modification of acacia sawdust with H2SO4 leads to a substantial increase in the adsorption performance of anionic dyes.

The Characteristics of Desulfurization using Metal Oxides in a Fluidized Bed Reactor (금속산화물을 이용한 유동층반응기에서 배연탈황특성)

  • Park, Tae Sung;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.278-285
    • /
    • 1998
  • In a fixed bed reactor, adsorption capacity of $SO_2$ in simulated flue gases was investigated with NMO(natural manganese ore), composed of various metal oxides, iron ore and $CuO/{\gamma}-Al_2O_3$ as adsorbents. The experiment carried out in a fluidized bed reactor with variables such as gas velocity, temperature and particle size. Iron ore was excluded in the fluidized bed reactor experiment for the lower adsorption capacity. The adsorption of $SO_2$ in metal oxide is a typical chemisorption because the adsorption capacity of all adsorbents increased with temperature. The effect of particle size on the adsorption capacity was varied with the ratio, $U_o/U_{mf}$ and the difference of $U_o-U_{mf}$. $U_o$ is the gas velocity, $U_{mf}$ is the minimum fluidization gas velocity. $U_o/U_{mf}$ and $U_o-U_{mf}$ explain the behavior of the gas and solids in the fluidized bed reactor. From the performance equation of the fluidized bed reactor, kinetic reaction rate constants were obtained by the non-linear least square method. The adsorption capacity of NMO proved the potential use of $SO_2$ adsorbents.

  • PDF

Evaluation of Air Pollutant Adsorption Performance of Potassium and Calcium Ion-Exchanged Zeolite (칼륨 및 칼슘 이온으로 치환된 제올라이트의 대기오염물질 흡착 성능 평가)

  • Ye Hwan Lee;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.313-317
    • /
    • 2023
  • In this study, the physicochemical characterization and adsorption performance of air pollutants (VOCs, SO2, and CO2) were evaluated for the recycling of zeolite used in the ion exchange process. The surface characteristics of the zeolite used were confirmed through Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis, and the composition and specific surface area were measured through X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET). There was no change in the surface properties of the used zeolite, but the content of potassium and calcium increased and the specific surface area decreased. The toluene, sulfur oxides, and carbon dioxide adsorption performance of the used zeolite was evaluated, and it was confirmed that the performance was improved compared to the fresh zeolite. In particular, for toluene and sulfur oxides, the adsorption amount increased by 2.6 times and 2.3 times, respectively, which might be due to the enhancement of the polymerization reaction and the increase of the base point, according to the composition of the used zeolite.

Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

  • Jo, Dong Hyun;Park, Cheonggi;Jung, Hyunchul;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.382-390
    • /
    • 2015
  • Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb $CO_2$. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low $CO_2$ capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for $CO_2$ capture.

The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and SO2 Adsorption Characteristics by the Impregnated Nanoparticles (PAN계 ACF의 최적 활성화 공정에 따른 흡착특성과 나노입자 첨착에 의한 SO2 흡착특성)

  • Lee, Jin-Jae;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.532-538
    • /
    • 2006
  • The carbonization and activation conditions for the PAN-based ACF of various grade were investigated to obtain the optimun activation condition with high surface area. And the surface properties and the absorption performance of toxic gas for terror were examined toward the PAN-ACF with the highest surface area. In the test results the surface area increased with increase of the activation temperature, but decreased with increase of the carbonization temperature. After carbonization condition ($900^{\circ}C$-15min) and activation condition ($900^{\circ}C$-30 min), we got the ACF with the highest surface area of $1204m^2/g$. In the absorption test of iodine and toxic gas for terror, this ACF showed more excellent absorption performance than the existing carbon-based adsorbent. Also, in order to give the function characteristic for a selective absorption, the stable nanoparticles of the Ag, Pt, Cu, Pd were prepared and impregnated on the PAN-based ACF in replacement of the existing method supporting metal catalysis. And were analyzed the surface characteristics and the $SO_{2}$ adsorption characteristics. In the $SO_{2}$ absorption performance test of the PAN-ACF with the impregnated nanoparticles, it wasn't change breakthrough time of Ag, Pt, Cu nanoparticle supported the PAN-ACF comparing with breakthrough time (326 sec) of the non supported PAN-ACF but Pd nanoparticle supported the PAN-ACF achieved excellent $SO_{2}$ absorption performance which has break-through time 925 sec.

Manufacture of Synthesis Zeolite using Coal Waste and Study of Analysis for Adsorption Performance (석탄 폐석을 이용한 합성제올라이트 제조 및 흡착성능 분석에 대한 연구)

  • Jung, You Shick;Lee, Kyung Woo;Park, Ji Yun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • The coal is a useful industrial resource for a long time. However, coal waste is generated by the mining process. Coal wastes are the main cause of pollution in the surrounding environment, and the amount of coal waste is set at hundreds of millions of tons. Significant amounts of these components in the coal waste are $SiO_2$ and $Al_2O_3$, which is also the main source of zeolites useful in various industries. This study is that the synthesis-zeolite was prepared from coal waste and properties and adsorption performance of synthesis-zeolite were compared with commercial zeolite. The synthesis-zeolite is showed similar properties to the commercial zeolite and also showed excellent adsorption performance against atmospheric pollution induced gases ($CO_2$, Toluene, $SO_2$, etc).

Effect of Carbon Dioxide Adsorption on LDPE/Zeolite 4A Composite Film

  • Jung, Bich Nam;Shim, Jin Kie;Hwang, Sung Wook
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.149-157
    • /
    • 2018
  • Low density polyethylene (LDPE) has been researched in many industrial applications, and LDPE/zeolite 4A composites has been extensively studied for many applications such as microporous, breathable film and so on. LDPE/zeolite composite have a great potential for carbon dioxide adsorption film due to its high adsorption ability. In this study, LDPE/zeolite 4A composites with various contents were prepared by melt mixing process, and co-extrusion process was applied to develop a $CO_2$ adsorption conventional film and foamed film. The thermal, rheological, mechanical, physical and morphological properties of composite films has been characterized, and $CO_2$ adsorption of the composite films evaluated by thermogravimetric analysis (TGA) and the performance was found to be about 18 cc/g at 30.9 wt% of the zeolite content.

Single Cell Performance Recovery of $SO_2$ Poisioned PEMFC using Cyclic Voltametry (순환전류 전압법을 이용한 이산화황 피독 PEMFC 단위전지의 성능 회복)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.497-501
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrade when sulfur dioxide is present in the fuel hydrogen gas, this is referred as $SO_2$ poisoning. This paper reveals $SO_2$ poisoning on PEMFC cathode part by measuring electrical performance of single cell under 1 ppm and 5 ppm on $SO_2$ gas operating. The security of $SO_2$ poisoning depended on $SO_2$ concentration under the best operating conditions($65^{\circ}C$ of cell temperature and 100% of relative humidity between anode and cathode). $SO_2$ adsorption occured on the surface of catalyst layer on membrane electrode assembly (MEA), In addition, MEA poisoning by $SO_2$ was cumulative but reversible. After poisoning within 5 ppm $SO_2$ for 1hr, the electrical performance of PEMFC was found to recover up to about 93% by cyclic voltametry scan.

Lornoxicam & Tenoxicam Drugs as Green Corrosion Inhibitors for Carbon Steel in 1 M H2SO4 Solution

  • Fouda, A.S.;El-Defrawy, A.M.;El-Sherbeni, M.W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • Inhibition performance of Lornoxicam & Tenoxicam against corrosion of carbon steel in 1M $H_2SO_4$ solutions was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The inhibition efficiency increased with increasing inhibitor's concentration, but decreased with increase in temperature. Potentiodynamic polarization curves showed that, the inhibitors were of mixed type. The apparent activation energy ($E^*_a$) and other thermodynamic parameters for the corrosion process have also been calculated and discussed. The inhibition of carbon steel corrosion is due to the adsorption of the inhibitor molecules on the surface, which follows Temkin adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.