• Title/Summary/Keyword: $Q^{\sharp}_p$-class

Search Result 2, Processing Time 0.017 seconds

SOME CLASSES OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS I

  • AUOF, M.K.;DARWISH, H.E.
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.119-135
    • /
    • 1994
  • Let $Q_{n+p-1}(\alpha)$ denote the- dass of functions $$f(z)=z^{P}-\sum_{n=0}^\infty{a_{(p+k)}z^{p+k}$$ ($a_{p+k}{\geq}0$, $p{\in}N=\left{1,2,{\cdots}\right}$) which are analytic and p-valent in the unit disc $U=\left{z:{\mid}z:{\mid}<1\right}$ and satisfying $Re\left{\frac{D^{n+p-1}f(\approx))^{\prime}}{pz^{p-a}\right}>{\alpha},0{\leq}{\alpha}<1,n>-p,z{\in}U.$ In this paper we obtain sharp results concerning coefficient estimates, distortion theorem, closure theorems and radii of p-valent close-to- convexity, starlikeness and convexity for the class $Q_{n+p-1}$ ($\alpha$). We also obtain class preserving integral operators of the form $F(z)=\frac{c+p}{z^{c}}\int_{o}^{z}t^{c-1}f(t)dt.$ c>-p $F\left(z\right)=\frac{c+p}{z^{c}}\int_{0}^{z} t^{c-1}f\left(t \right)dt. \qquad c>-p$ for the class $Q_{n+p-1}$ ($\alpha$). Conversely when $F(z){\in}Q_{n+p-1}(\alpha)$, radius of p-valence of f(z) has been determined.

  • PDF