SOME CLASSES OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS I

M. K. AUOF AND H. E. DARWISH

Dept. of Mathematics, Faculty of Science, Universitysity of Mansoura, Mansoura, Egypt.

Abstract

Let $Q_{n+p-1}(\alpha)$ denote the class of functions $f(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k}$

 $(a_{p+k} \ge 0, p \in \mathbb{N} = \{1, 2, \dots\})$ which are analytic and p-valent in the unit disc $U = \{z : |z| < 1\}$ and satisfying

$$Re\left\{\frac{(D^{n+p-1}f(z))'}{pz^{p-1}}\right\}>\alpha,\,0\leq\alpha<1,\,n>-p,\,z\in U.$$

In this paper we obtain sharp results concerning coefficient estimates, distortion theorem, closure theorems and radii of p-valent close-to-convexity, starlikeness and convexity for the class $Q_{n+p-1}(\alpha)$. We also obtain class preserving integral operators of the form

$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt. \quad c > -p$$

for the class $Q_{n+p-1}(\alpha)$. Conversely when $F(z) \in Q_{n+p-1}(\alpha)$, radius of p-valence of f(z) has been determined.

1. Introduction

Let S(p) denote the class of functions of the form

(1.1)
$$f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (p \in \mathbb{N} = \{1, 2, \dots, \}),$$

Recived March 5, 1994.

Key Words-Analytic, p-valent, Ruscheweyh derivative.

AMS(1991) Subject Classification. 30C45.

which are analytic and p-valent in the unit disc $U = \{z : |z| < 1\}$. Let f(z) be in S(p) and g(z) be in S(p). Then we denote by f * g(z) the Hadamard product of f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by

(1.2)
$$g(z) = z^{p} + \sum_{k=1}^{\infty} b_{p+k} z^{p+k} (p \in \mathbb{N}),$$

then

(1.3)
$$f(z) * g(z) = z^{p} + \sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}.$$

The (n+p-1)-th order Ruscheweyh derivative $D^{n+p-1}f(z)$ of a function f(z) of S(p) is defined by

(1.4)
$$D^{n+p-1}f(z) = \frac{z^p(z^{n-1}f(z))^{(n+p-1)}}{(n+p-1)!}$$

where n is any integer such that n > -p. It is easy to see that

(1.5)
$$D^{n+p-1}f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z)$$

(1.6)
$$= z^{p} + \sum_{k=1}^{\infty} \delta(n,k) a_{p+k} z^{p+k}.$$

where

(1.7)
$$\delta(n,k) = \binom{n+p-1+k}{n+p-1}.$$

Particularly, the symbol $D^n f(z)$ was named the *n*-th order Ruscheweyh derivative of f(z) by Al-Amiri [1].

In [3] Goel and Sohi introduced the classes $T_{n+p-1}(\alpha)$ of functions in S(p) satisfying

(1.8)
$$Re\left\{\frac{(D^{n+p-1}f(z))'}{pz^{p-1}}\right\} > \alpha, \ 0 \le \alpha < 1, \ n > -p, \ z \in U.$$

Further Goel and Sohi [3] showed the basic property

(1.9)
$$T_{n+p}(\alpha) \subset T_{n+p-1}(\alpha) \quad (0 \le \alpha < 1, n > -p).$$

Let T(p) denote the subclass of S(p) consisting of analytic and p-valent functions which can be expressed in the form:

(1.10)
$$f(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (a_{p+k} \ge 0; p \in \mathbb{N}).$$

The object of the present paper is to introduce the class $Q_{n+p-1}(\alpha)$ of analytic and p-valent functions f(z) belonging to the class T(p) and satisfying

(1.11)
$$Re\left\{\frac{(D^{n+p-1}f(z))'}{pz^{p-1}}\right\} > \alpha, \ 0 \le \alpha < 1, \ n > -p, \ z \in U.$$

We note that for p = 1 the class $Q_n(\alpha)$ ($0 \le \alpha < 1$ and $n \in \mathbb{N}_o = \mathbb{N} \cup \{0\}$) denote the subclass of T(1) whose members satisfy

$$(1.12) Re(D^n f(z))' > \alpha, \quad z \in U.$$

The class $Q_n(\alpha)$ was studied by Uralegaddi and Sarangi [6]. Also for n = 1 - p the class $Q_0(\alpha) = F_p(1, p\alpha)$ $(0 \le \alpha < 1)$ denote the subclass of T(p) whose members satisfy

(1.13)
$$Re\left\{\frac{f'(z)}{pz^{p-1}}\right\} > \alpha, \quad z \in U.$$

The class $F_p(1, p\alpha)$ was studied by Lee, Owa and Srivastava [5].

Also let $T^*(p, \alpha)$ and $C(p, \alpha)$ be the subclasses of T(p) that are *p*-valent starlike of order α and *p*-valent convex of order $\alpha(0 \le \alpha < p)$, respectively (see [5, 2]).

2. Coefficient Estimates

THEOREM 1. A function f(z) defined by (1.10) is in the class $Q_{n+p-1}(\alpha)$ if and only if

(2.1)
$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) a_{p+k} \leq 1 - \alpha.$$

The result is sharp.

Proof. Assume that the inequality (2.1) holds and let |z| = 1. It is sufficient to show that $\frac{(D^{n+p-1}f(z))'}{pz^{p-1}}$ lies in a circle with center at w=1 and radius $1-\alpha$, we have

$$\left|\frac{(D^{n+p-1}f(z))'}{pz^{p-1}}-1\right|\leq \sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right)\delta(n,k)a_{p+k}.$$

The last expression is bounded above by $1 - \alpha$ if (2.1) is satisfied.

Conversely suppose that

$$Re\frac{(D^{n+p-1}f(z))'}{pz^{p-1}} = Re\{1 - \sum_{k=1}^{\infty} (\frac{p+k}{p})\delta(n,k)a_{p+k}z^k\} > \alpha;$$

choose values of z on the real axis so that $\frac{(D^{n+p-1}f(z))'}{pz^{p-1}}$ is real. Letting $z \to 1^-$ along the real axis we obtain (2.1).

Finally, we note that the assertion (2.1) of Theorem 1 is sharp, the extremal function being

(2.2)
$$f(z) = z^{p} - \frac{p(1-\alpha)}{(p+1)\delta(n,k)}z^{p+k} \quad (k \ge 1).$$

COROLLARY 1. Let the function f(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$. Then we have

(2.3)
$$a_{p+k} \leq \frac{p(1-\alpha)}{(p+k)\delta(n,k)} \quad (k \geq 1).$$

Equality is attained for the function f(z) given by (2.2).

THEOREM 2. $Q_{n+p}(\alpha) \subseteq Q_{n+p-1}(\alpha)$ for each n > -p.

Proof. Let
$$f(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \in Q_{n+p}(\alpha)$$
; then

(2.4)
$$\sum_{k=1}^{\infty} (\frac{p+k}{p}) \delta(n+1,k) \, a_{p+k} \le 1 - \alpha$$

and since

(2.5)
$$\delta(n,k) \leq \delta(n+1,k) \quad \text{for } k=1,2,\cdots,$$

we have

(2.6)
$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) \, a_{p+k} \leq 1 - \alpha.$$

The result follows from Theorem 1.

3. Distortion Theorem

THEOREM 3. Let the function f(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$, (n > -p), then for |z| = r < 1, we have

$$(3.1) r^{p} - \frac{p(1-\alpha)}{(p+1)(n+p)}r^{p+1} \leq |f(z)| \leq r^{p} + \frac{p(1-\alpha)}{(p+1)(n+p)}r^{p+1},$$

and

(3.2)
$$pr^{p-1} - \frac{p(1-\alpha)}{(n+p)}r^p \le |f'(z)| \le pr^{p-1} + \frac{p(1-\alpha)}{(n+p)}r^p.$$

Furthermore

(3.3)
$$p - p(1-\alpha)r \leq \left| \frac{(D^{n+p-1}f(z))'}{z^{p-1}} \right| \leq p + p(1-\alpha)r.$$

These results are sharp.

Proof. Since $f(z) \in Q_{n+p-1}(\alpha)$, in view of Theorem 1, we have

(3.4)
$$(\frac{p+1}{p})\delta(n,1) \sum_{k=1}^{\infty} a_{p+k} \le \sum_{k=1}^{\infty} (\frac{p+k}{p})\delta(n,k)a_{p+k}$$

$$\le (1-\alpha),$$

which evidently yields

(3.5)
$$\sum_{k=1}^{\infty} a_{p+k} \leq \frac{p(1-\alpha)}{(p+1)(n+p)} \quad (n > -p).$$

Consequently, we obtain

(3.6)
$$|f(z)| \ge r^p - r^{p+1} \sum_{k=1}^{\infty} a_{p+k} \\ \ge r^p - \frac{p(1-\alpha)}{(p+1)(n+p)} r^{p+1} \quad (n > -p),$$

and

(3.7)
$$|f(z)| \le r^{p} + r^{p+1} \sum_{k=1}^{\infty} a_{p+k} \\ \le r^{p} + \frac{p(1-\alpha)}{(p+1)(n+p)} r^{p+1} \quad (n > -p),$$

which prove the assertion (3.1) of Theorem 3. Further

$$|f'(z)| \ge pr^{p-1} - r^p \sum_{k=1}^{\infty} (p+k)a_{p+k}$$

and

$$|f'(z)| \le pr^{p-1} + r^p \sum_{k=1}^{\infty} (p+k)a_{p+k}.$$

But from Theorem 1, it holds that

$$\frac{\delta(n,1)}{p}\sum_{k=1}^{\infty}(p+k)a_{p+k}\leq\sum_{k=1}^{\infty}\frac{(p+k)}{p}\delta(n,k)a_{p+k}\leq(1-\alpha)$$

which gives that

(3.8)
$$\sum_{k=1}^{\infty} (p+k)a_{p+k} \le \frac{p(1-\alpha)}{(n+p)} \quad (n > -p).$$

Hence

(3.9)
$$|f'(z)| \ge pr^{p-1} - \frac{p(1-\alpha)}{(n+p)}r^p \quad (n > -p)$$

and

(3.10)
$$|f'(z)| \le pr^{p-1} + \frac{p(1-\alpha)}{(n+p)}r^p \quad (n > -p)$$

which prove the assertion (3.2) of Theorem 3.

Next, by using the second inequality in (3.4), we observe that

(3.11)
$$\left| \frac{(D^{n+p-1}f(z))'}{z^{p-1}} \right| \le p + r \sum_{k=1}^{\infty} (p+k)\delta(n,k)a_{p+k}$$

$$\le p + p(1-\alpha)r,$$

and

(3.12)
$$\left|\frac{(D^{n+p-1}f(z))'}{z^{p-1}}\right| \ge p - r \sum_{k=1}^{\infty} (p+k)\delta(n,k)a_{p+k}$$
$$\ge p - p(1-\alpha)r,$$

which prove the assertion (3.3) of Theorem 3. Sharpness follows if we take

(3.13)
$$f(z) = z^p - \frac{p(1-\alpha)}{(p+1)(n+p)} z^{p+1} \quad (n > -p, z = \pm r).$$

COROLLARY 2. Under the hypotheses of Theorem 3, f(z) is included in a disc with its center at the origin and radius r_1 given by

(3.14)
$$r_1 = 1 + \frac{p(1-\alpha)}{(p+1)(n+p)} \quad (n > -p),$$

and f'(z) is included in a disc with its center at the origin and radius r_2 given by

(3.15)
$$r_2 = p + \frac{p(1-\alpha)}{(p+1)(n+p)} \quad (n > -p).$$

Also $\frac{(D^{n+p-1}f(z))'}{z^{p-1}}$ is included in a disc with its center at the origin and radius r_3 given by

$$(3.16) r_3 = p + p(1 - \alpha).$$

The result is sharp with extremal function f(z) given by (3.13).

4. Integral Operators

THEOREM 4. Let the function f(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$, and let F(z) be defined by

(4.1)
$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt.$$

Then

(i) for every $c, c > -p, F(z) \in Q_{n+p-1}(\alpha)$ and

(ii) for every $c, -p < c \le n, F(z) \in Q_{n+p}(\alpha)$.

Proof. (i) From the representation of F(z), it follows that

$$F(z) = z^{p} - \sum_{k=1}^{\infty} b_{p+k} z^{p+k},$$

where

$$b_{p+k} = \left(\frac{c+p}{c+p+k}\right)a_{p+k}.$$

Therefore

$$\sum_{k=1}^{\infty} \frac{(p+k)}{p} \delta(n,k) b_{p+k} = \sum_{k=1}^{\infty} \frac{(p+k)}{p} \delta(n,k) \left(\frac{c+p}{c+p+k}\right) a_{p+k}$$
$$= \sum_{k=1}^{\infty} \frac{(p+k)}{p} \delta(n,k) a_{p+k} \le (1-\alpha),$$

since $f(z) \in Q_{n+p-1}(\alpha)$. Hence, by Theorem 1, $F(z) \in Q_{n+p-1}(\alpha)$.

(ii) In view of Theorem 1 it is sufficient to show that

$$\sum_{k=1}^{\infty} \frac{(p+k)}{p} \delta(n+1,k) \left(\frac{c+p}{c+p+k}\right) a_{p+k} \le (1-\alpha).$$

Since $\delta(n,k) - (\frac{c+p}{c+p+k})\delta(n+1,k) \ge 0$ if $-p < c \le n$ $(k=1,2,\cdots)$ the result follows from Theorem 1.

Putting c = 1 - p in Theorem 4 we get the following

COROLLARY 3. Let the function f(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$, and let F(z) be defined by

(4.2)
$$F(z) = \frac{1}{z^{1-p}} \int_0^z \frac{f(t)}{t^p} dt.$$

Then $F(z) \in Q_{n+p}(\alpha)$.

THEOREM 5. Let c be a real number such that c > -p. If $F(z) \in Q_{n+p-1}(\alpha)$, then the function f(z) defined in (4.1) is p-valent in $|z| < R_p^*$, where

(4.3)
$$R_p^* = \inf_{k} \left[\frac{(c+p)\delta(n,k)p}{(c+p+k)(1-\alpha)} \right]^{\frac{1}{k}} \quad (k \ge 1).$$

The result is sharp.

Proof. Let $F(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} (a_{p+k} \ge 0)$. It follows from (4.1) that

$$f(z) = \frac{z^{1-c}(z^{c}F(z))'}{(c+p)}, \quad (c > -p)$$
$$= z^{p} - \sum_{k=1}^{\infty} \left(\frac{c+p+k}{c+p}\right) a_{p+k} z^{p+k}.$$

To prove the result it suffices to show that

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p \text{ for } |z| < R_p^*.$$

Now

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| = \left| -\sum_{k=1}^{\infty} \left(\frac{c+p+k}{c+p} \right) a_{p+k} z^k \right|$$

$$\leq \sum_{k=1}^{\infty} \left(\frac{c+p+k}{c+p} \right) a_{p+k} |z|^k.$$

Thus $\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p$ if

(4.4)
$$\sum_{k=1}^{\infty} \left(\frac{c+p+k}{c+p} \right) (p+k) a_{p+k} |z|^k \le p.$$

But Theorem 1 confirms that

(4.5)
$$\sum_{k=1}^{\infty} \frac{(p+k)\delta(n,k)}{(1-\alpha)} a_{p+k} \leq p.$$

Thus (4.4) will be satisfied if

(4.6)
$$(\frac{c+p+k}{c+p})(p+k) \le \frac{(p+k)\delta(n,k)}{(1-\alpha)}, \quad (k \ge 1),$$

or if

$$|z| \leq \left[\frac{(c+p)\delta(n,k)}{(c+p+k)(1-\alpha)}\right]^{\frac{1}{k}}, \quad (k \geq 1).$$

The required result follows now from (4.6). The result is sharp for the function

(4.7)
$$f(z) = z^{p} - \frac{p(c+p+k)(1-\alpha)}{(p+k)(c+p)\delta(n,k)} z^{p+k} \quad (k \ge 1).$$

THEOREM 6. Let the function F(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$, $f(z) = \frac{z^{1-c}(z^c F(z))'}{(c+p)}$, (c > -p). Then $Re \frac{(D^{n+p-1}f(z))'}{pz^{p-1}} > \beta$ $(0 \le \beta < 1)$ for $|z| < r_p^*$, where

(4.8)
$$r_p^* = \inf_k \left[\frac{(c+p)(1-\beta)}{(c+p+k)(1-\alpha)} \right]^{\frac{1}{k}} \quad (k \ge 1).$$

The result is sharp.

Proof. It is sufficient to show that

(4.9)
$$\left| \frac{(D^{n+p-1}f(z))'}{pz^{p-1}} - 1 \right| \le 1 - \beta \text{ for } |z| < r_p^*.$$

We have

$$\left| \frac{(D^{n+p-1}f(z))'}{pz^{p-1}} - 1 \right| \leq \sum_{k=1}^{\infty} \left(\frac{p+k}{p} \right) \left(\frac{c+p+k}{c+p} \right) \delta(n,k) a_{p+k} |z|^{k}.$$

Hence the inequality (4.9) will be satisfied if

(4.10)
$$\sum_{k=1}^{\infty} (\frac{p+k}{p}) (\frac{c+p+k}{c+p}) \delta(n,k) a_{p+k} |z|^k \le 1-\beta.$$

Since $F(z) \in Q_{n+p-1}(\alpha)$, from Theorem 1,

$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) a_{p+k} \le 1 - \alpha$$

and the inequality (4.10) will be satisfied if

$$\frac{(p+k)(c+p+k)\delta(n,k)a_{p+k}|z|^k}{p(c+p)(1-\beta)} \leq \frac{(p+k)\delta(n,k)a_{p+k}}{p(1-\alpha)}.$$

Solving it for |z| we obtain

$$|z| \le \left[\frac{(c+p)(1-\beta)}{(c+p+k)(1-\alpha)}\right]^{\frac{1}{k}}$$
 for $k=1,2,\cdots$.

Writing $|z| = r_p^*$ the result follows. The estimate is sharp for the function

$$F(z) = z^{p} - \frac{p(1-\alpha)}{(p+k)\delta(n,k)}z^{p+k} \text{ for som } k.$$

THEOREM 7. Let the function f(z) defined by (1.10) be in the class $T^*(p,\alpha)$ and let

$$(4.11) F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt = z^p - \sum_{k=1}^\infty \left(\frac{c+p}{c+p+k} \right) a_{p+k} z^{p+k}.$$

Then

(i) $F(z) \in T^*(p,\alpha)$ for c > -p

(ii)
$$F(z) \in C(p, \alpha)$$
 for $-p < c \le 0$.

Proof. (i)
$$f(z) = z^p - \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \in T^*(p,\alpha)$$
 if and only if

$$\sum_{k=1}^{\infty} (p+k-\alpha)a_{p+k} \leq (p-\alpha) \qquad [4,2].$$

For c > -p,

$$\sum_{k=1}^{\infty} \left(\frac{c+p}{c+p+k}\right) (p+k-\alpha) a_{p+k} \leq \sum_{k=1}^{\infty} (p+k-\alpha) a_{p+k} \leq (p-\alpha).$$

Hence $F(z) \in T^*(p, \alpha)$.

(ii) Let $-p < c \le 0$. From (4. 11) we obtain

$$zF'(z) = (c+p)f(z) - cF(z).$$

Since $T^*(p,\alpha)$ is closed under convex linear combinations [4.2], $zF'(z) \in T^*(p,\alpha)$. That is $F(z) \in C(p,\alpha)$.

5. Radii of Close-to-Convexity, Starlikeness and Convexity

THEOREM 8. Let the function f(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$, then f(z) is p-valent close-to-convex of order $\beta(0 \le \beta < p)$ in $|z| < r_1(n, p, \alpha, \beta)$, where

(5.1)
$$r_1(n, p, \alpha, \beta) = \inf_{k} \left[\frac{(p-\beta)\delta(n, k)}{p(1-\alpha)} \right]^{\frac{1}{k}} \quad (k \ge 1).$$

The result is sharp, with the extremal function f(z) given by (2.2).

Proof. We must show that $\left|\frac{f'(z)}{z^{p-1}} - p\right| \leq \rho - \beta$ for $|z| < r_1(n, p, \alpha, \beta)$. We have

$$\left|\frac{f'(z)}{z^{p-1}}-p\right|\leq \sum_{k=1}^{\infty}(p+k)a_{p+k}|z|^{k}.$$

Thus $\left|\frac{f'(z)}{z^{p-1}} - p\right| \le p - \beta$ if

(5.2)
$$\sum_{k=1}^{\infty} (\frac{p+k}{p-\beta}) a_{p+k} |z|^k \le 1.$$

Hence, by Theorem 1, (5.2) will be true if

$$(\frac{p+k}{p-\beta})|z|^k \le \frac{(p+k)\delta(n,k)}{p(1-\alpha)}$$

or if

$$|z| \leq \left[\frac{(p-\beta)\delta(n,k)}{p(1-\alpha)}\right]^{\frac{1}{k}} (k \geq 1).$$

The theorem follows easily from (5.3).

THEOREM 9. Let the function f(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$, then f(z) is p-valent starlike of order $\beta(0 \le \beta < p)$ in $|z| < r_2(n, p, \alpha, \beta)$, where

(5.4)
$$r_2(n, p, \alpha, \beta) = \inf_{k} \left[\frac{(p-\beta)(p+k)\delta(n, k)}{(p+k-\beta)p(1-\alpha)} \right]^{\frac{1}{k}} \quad (k \geq 1).$$

The result is sharp, with the extremal function f(z) given by (2.2).

Proof. It is sufficient to show that $\left|\frac{zf'(z)}{f(z)} - p\right| \leq p - \beta$ for $|z| < r_2(n, p, \alpha, \beta)$. We have

$$\left| \frac{zf'(z)}{f(z)} - p \right| \le \frac{\sum_{k=1}^{\infty} k a_{p+k} |z|^k}{1 - \sum_{k=1}^{\infty} a_{p+k} |z|^k}$$

Thus
$$\left|\frac{zf'(z)}{f(z)} - p\right| \le p - \beta$$
 if

(5.5)
$$\sum_{k=1}^{\infty} \frac{(p+k-\beta)}{(p-\beta)} a_{p+k} |z|^k \le 1.$$

Hence, by Theorem 1, (5.5) will be true if

$$\frac{(p+k-\beta)}{(p-\beta)}|z|^k \le \frac{(p+k)\delta(n,k)}{p(1-\alpha)}$$

or if

$$|z| \leq \left[\frac{(p-\beta)(p+k)\delta(n,k)}{(p+k-\beta)p(1-\alpha)} \right]^{\frac{1}{k}} \quad (k \geq 1).$$

The theorem follows easily from (5.6).

COROLLARY 4. Let the function f(z) defined by (1.10) be in the class $Q_{n+p-1}(\alpha)$, then f(z) is p-valent convex of order $\beta(0 \le \beta < p)$ in $|z| < r_3(n,p,\alpha,\beta)$, where

(5.7)
$$r_3(n,p,\alpha,\beta) = \inf_{k} \left[\frac{(p-\beta)\delta(n,k)}{(p+k-\beta)(1-\alpha)} \right]^{\frac{1}{k}} \quad (k \geq 1).$$

The result is sharp, with the extremal function f(z) given by (2.2)

6. Closure Theorems

Let the function $f_i(z)$ be defined, for $i = 1, 2, \dots, m$, by

(6.1)
$$f_i(z) = z^p - \sum_{k=1}^{\infty} a_{p+k,i} z^{p+k} (a_{p+k,i} \ge 0; p \in \mathbb{N})$$

for $z \in U$.

THEOREM 10. Let the functions $f_i(z)$ $(i = 1, 2, \dots, m)$ defined by (6.1) be in the class $Q_{n+p-1}(\alpha)$. Then the function h(z) defined by

(6.2)
$$h(z) = z^{p} - \sum_{k=1}^{\infty} b_{p+k} z^{p+k}$$

also belongs to the class $Q_{n+p-1}(\alpha)$, where

(6.3)
$$b_{p+k} = \frac{1}{m} \sum_{i=1}^{m} a_{p+k,i}.$$

Proof. Since $f_i(z) \in Q_{n+p-1}(\alpha)$, it follows from Theorem 1, that

$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) a_{p+k,i} \leq 1-\alpha, \quad i=1,2,\cdots,m.$$

Therefore

(6.4)
$$\sum_{k=1}^{\infty} (\frac{p+k}{p}) \delta(n,k) b_{p+k} = \sum_{k=1}^{\infty} (\frac{p+k}{p}) \delta(n,k) \left\{ \frac{1}{m} \sum_{i=1}^{m} a_{p+k,i} \right\}$$

$$\leq 1 - \alpha.$$

Hence by Theorem 1, $h(z) \in Q_{n+p-1}(\alpha)$. Thus we have the theorem.

THEOREM 11. Let the functions $f_i(z)$ defined by (6.1) be in the classes $Q_{n+p-1}(\alpha_i)$ for each $i=1,2,\cdots,m$. Then the function h(z) defined by

(6.5)
$$h(z) = z^{p} - \frac{1}{m} \sum_{k=1}^{\infty} \left(\sum_{i=1}^{m} a_{p+k,i} \right) z^{p+k}$$

is in the class $Q_{n+p-1}(\alpha)$, where

(6.6)
$$\alpha = \min_{1 \le i \le m} \{\alpha_i\}.$$

Proof. Since $f_i(z) \in Q_{n+p-1}(\alpha_i)$ for each $i = 1, 2, \dots, m$, we observe that

(6.7)
$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) a_{p+k,i} \le 1 - \alpha_i$$

with the aid of Theorem 1. Therefore

$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) \left(\frac{1}{m} \sum_{i=1}^{m} a_{p+k,i}\right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left\{ \sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) a_{p+k,i} \right\}$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} (1-\alpha_i) \leq 1-\alpha.$$

Thus

(6.8)
$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) \left(\frac{1}{m} \sum_{i=1}^{m} a_{p+k,i}\right) \le 1 - \alpha,$$

which shows that $h(z) \in Q_{n+p-1}(\alpha)$, where α is given by (6.6).

THEOREM 12. Let the functions $f_i(z)$ defined by (6.1) be in the classes $Q_{n+p-1}(\alpha)$ for every $i=1,2,\cdots,m$. Then the function h(z) defined by

(6.9)
$$h(z) = \sum_{i=1}^{m} c_i f_i(z) \quad (c_i \ge 0)$$

is also in the same class $Q_{n+p-1}(\alpha)$, where

(6.10)
$$\sum_{i=1}^{m} c_i = 1.$$

Proof. According to the definition of h(z), we can write that

(6.11)
$$h(z) = z^{p} - \sum_{k=1}^{\infty} \left(\sum_{i=1}^{m} c_{i} a_{p+k,i} \right) z^{p+k}.$$

By means of Theorem 1, we have

(6.12)
$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) a_{p+k,i} \leq 1 - \alpha$$

for every $i = 1, 2, \dots, m$. Hence we can observe that

$$(6.13) \sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) \left(\sum_{i=1}^{m} c_i a_{p+k,i}\right)$$

$$= \sum_{i=1}^{n} c_i \left\{\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) a_{p+k,i}\right\}$$

$$\leq \left(\sum_{i=1}^{m} c_i\right) (1-\alpha) = 1-\alpha$$

which implies that $h(z) \in Q_{n+p-1}(\alpha)$. Thus we have the theorem.

THEOREM 13. THe class $Q_{n+p-1}(\alpha)$ is convex.

Proof. Let the functions $f_i(z)$ (i = 1, 2) defined by (6.1) be in the class $Q_{n+p-1}(\alpha)$. Thus it is sufficient to prove that the function

(6.14)
$$h(z) = \lambda f_1(z) + (1 - \lambda) f_2(z) \quad (0 \le \lambda \le 1)$$

is in the class $Q_{n+p-1}(\alpha)$. Since for $0 \le \lambda \le 1$,

(6.15)
$$h(z) = z^{p} - \sum_{k=1}^{\infty} \left\{ \lambda a_{p+k,1} + (1-\lambda) a_{p+k,2} \right\} z^{p+k},$$

with the aid of Theorem 1, we have

(6.16)
$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) \left\{ \lambda a_{p+k,1} + (1-\lambda) a_{p+k,2} \right\} \le 1 - \alpha$$

which implies that $h(z) \in Q_{n+p-1}(\alpha)$. Hence $Q_{n+p-1}(\alpha)$ is convex.

THEOREM 14. Let $f_p(z) = z^p$ and

(6.17)
$$f_{p+k}(z) = z^p - \frac{p(1-\alpha)}{(p+k)\delta(n,k)} z^{p+k} (k \ge 1, n > -p),$$

for $0 \le \alpha < 1$. Then $f(z) \in Q_{n+p-1}(\alpha)$ if and only if it can be expressed in the form

(6.18)
$$f(z) = \lambda_p f_p(z) + \sum_{k=1}^{\infty} \lambda_{p+k} f_{p+k}(z),$$

where
$$\lambda_{p+k} \geq 0 \ (k \geq 1)$$
 and $\lambda_p + \sum_{k=1}^{\infty} \lambda_{p+k} = 1$.

Proof. Suppose that

(6.19)
$$f(z) = \lambda_p f_p(z) + \sum_{k=1}^{\infty} \lambda_{p+k} f_{p+k}(z)$$
$$= z^p - \sum_{k=1}^{\infty} \frac{p(1-\alpha)\lambda_{p+k}}{(p+k)\delta(n,k)} z^{p+k}$$

Then we get

(6.20)
$$\sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right) \delta(n,k) \frac{p(1-\alpha)}{(p+k)\delta(n,k)} \lambda_{p+k}$$
$$= (1-\alpha) \sum_{k=1}^{\infty} \lambda_{p+k} \le 1-\alpha.$$

Hence, by Theorem 1, $f(z) \in Q_{n+p-1}(\alpha)$.

On the other hand, suppose that the function f(z) defined by (1.10) is in the class $Q_{n+p-1}(\alpha)$. Again, by using Theorem 1, we can show that

(6.21)
$$a_{p+k} \leq \frac{p(1-\alpha)}{(p+k)b(n,k)} \quad (k \geq 1, n > -p).$$

Setting

(6.22)
$$\lambda_{p+k} = \frac{(p+k)\delta(n,k)}{p(1-\alpha)} \quad (k \ge 1, n > -p).$$

and

$$(6.23) \lambda_p = 1 - \sum_{k=1}^{\infty} \lambda_{p+k}.$$

Hence, we can see that f(z) can be expressed in the form (6.18). This completes the proof of Theorem 14.

COROLLARY 5. The extreme points of the class $Q_{n+p-1}(\alpha)$ are $f_p(z) = z^p$ and

$$f_{p+k}(z) = z^p - \frac{p(1-\alpha)}{(p+k)\delta(n,k)}z^{p+k} \quad (k \ge 1, n > -p).$$

References

- 1. H. S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 88 (1980), 87-94.
- 2. M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc. 25, no. 1 (1988), 53-66.
- 3. R. M. and N. S. Sohi, New criteria for p-valence, Indian J. Pure Appl. Math. 11, no. 10 (1980), 1356-1360.
- 4. S. K. Lee, S. Owa, and H. M. Srivastava, Basic properties and characterizations of a certain class of analytic functions with negative coefficients, Utilitas Math. 36 (1989), 121-128.
- 5. S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59, no. 4 (1985), 385-401.
- B. A. Uralegaddi and S. M. Sarangi, Some classes of unibalent functions with negative coefficients, An. Stiint. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. (N. S.) 34 (1988), 7-11.