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SOME CLASSES OF MULTIVALENT FUNCTIONS
WITH NEGATIVE COEFFICIENTS 1
M. K. Avor AND H. E. DARWISH
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Abstract

Let Qn4p-1() denote the class of functions f(z) = 2P — Za,,+kz”+"
k=1
(ap+x 2 0,p € N= {1,2,-.-}) which are analytic and p-valent in the unit
disc U = {z : |2| < 1} and satisfying

e 27112

pzP-l

}>a,0§a<1,n>——p,z€U.

In this paper we obtain sharp results concerning coefficient estimates,
distortion theorem, closure theorems and radii of p-valent close-to- con-
vexity, starlikeness and convexity for the class Qn4p-1 (). We also obtain
class preserving integral operators of the form

c+
z°¢

F(z)=

z
/ £ f(t)dt. ¢ > —p
[

for the class Qn4p-1(a). Conversely when F(z) € Qnip-1(a), radius of
p-valence of f(z) has been determined.

1. Introduction

Let S(p) denote the class of functions of the form

(1'1) f(z):zp+2ap+kzp+k(pe N= {1,2,"‘ 7})7
k=1
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which are analytic and p-valent in the unit disc U = {2 : |z| < 1}. Let
f(2) be in S(p) and ¢g(z) be in S(p). Then we denote by f * g(z) the
Hadamard product of f(2) and g(z), that is, if f(2) is given by (1.1) and
g(z) is given by

o0
(1.2) g(z) ="+ b (peN),
k=1
then
o0
(1.3) F(z)%9(z) = 2P + ) apyabpyiz®™.
k=1

The (n+ p—1)-th order Ruscheweyh derivative D"**?~! f(z) of a function
f(z) of S(p) is defined by

(271 ()P D)
(n+p-1)

(1.4) D f(z) =

where n is any integer such that n > —p. It is easy to see that

2P

(1.5) D Pl f(z) = e f(2)
(1.6) =P+ ) §(n,k)aperz?tt.
k=1
where
_(n+p-1+k
(1.7) 5(n,k).-< ntp-1 )

Particularly, the symbol D" f(z) was named the n-th order Ruscheweyh
derivative of f(2) by Al-Amiri [1].

In [3] Goel and Sohi introduced the classes Tp4p-1(a) of functions in
S(p) satisfying

(D™= f(z)Y

pzP~!

(1.8) Re{

}>a,0_<_a<1,n>—-—p,z€U.
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Further Gocel and Sohi [3] showed the basic property
(1.9) Totp(@) C Tagp-1(a) (0<a <1, n>—p)
Let T(p) denote the subclass of S(p) consisting of analytic and p- valent
functions which can be expressed in the form:
[ o}
(1.10) f(2)=2" =3 aprsz® ¥ (apee 205 p € N).
k=1

The object of the present paper is to introduce the class Qn4p—1(a)
of analytic and p-valent functions f(z) belonging to the class T(p) and
satisfying

n+p—1 £7.\\
(1.11) Re {(D pzﬂ“{(~)) } >a,0<a<l,n>~p, z€U.

We note that for p = 1 the class @,,(a) (0 € a < 1and n € N, = NU{0}
) denote the subclass of T(1) whose members satisfy

(1.12) Re(D"f(2)) >a, zeU.

The class Qn(a) was studied by Uralegaddi and Sarangi [6]. Also for

n =1 — p the class Qo(a) = Fy(1,pa) (0 £ a < 1) denote the subclass of
T(p) whose members satisfy

(1.13) Re {__f'_(_:_:_)_} >a, z€U.

pzP-!

The class F,(1, pa) was studied by Lee, Owa and Srivastava [5)].
Also let T*(p, a) and C(p, a) be the subclasses of T(p) that are p-valent
starlike of order @ and p-valent convex of order a(0 < a < p), respectively

(see [5, 2]).
2. Coeflicient Estimates

THEOREM 1. A function f(z) defined by (1.10) is in the class Qn4p—1(a)
if and only if

(2.1) Z(&:}{“—)a(fz, ka4 <1—a.
P
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The result is sharp.

Proof. Assume that the inequality (2.1) holds and let |z| = 1. It is

. ntp-1 fl . . .
sufficient to show that (2 p:,_ () Jies in a circle with center at w = 1
and radius 1 — a, we have

Dn+p-—1 z ! o0 + k
( sz"{( ) - 1\ < 2(27)6(", k)aﬂ-k.
k=1

The last expression is bounded above by 1 — « if (2.1) is satisfied.
Conversely suppose that

P Gkt (C) R S 2.

PP )6("=k)ap+kzk} >

k=1

: ntp-1p(5)) .
choose values of 2z on the real axis so that LQ—P—:,—:#-’Q)- is real. Letting

z — 17 along the real axis we obtain (2.1).
Finally, we note that the assertion (2.1) of Theorem 1 is sharp, the
extremal function being

g — P _ p(l - Q) p+k >
(2.2) flz)==z2 TFSICN! 1)6(n,k)z (k21).
COROLLARY 1. Let the function f(2) defined by (1.10) be in the class
@n+p-1(a). Then we have

p(l—a) _
(2.3) aptk < B+ R0 E) (k2 1).

Equality is attained for the function f(z) given by (2.2).
THEOREM 2. Qnip(a) € Qnip-1(a) for each n > —p.
Proof. Let f(z) = 2P — Ypo, aptk2?T* € Quip(a); then

(2.4) Z(": Jo(n+1,k)aps < 1 - a
k——.
and since
(2.5) §(n k) < 8(n+1,k) fork=12,--,
we have
(2.6) S )on, K aper <1
k=1

The result follows from Theorem 1.
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3. Distortion Theorem

THEOREM 3. Let the function f(z) defined by (1.10) be in the class
Qnip-1(a), (n > —p), then for |z| =r < 1, we have

p(l —a) p(l —a)
31) r- 7T 1)(n+p)r”+1 SIf(z)| <rP + 1 1)(n+p)7'p+1,

and

-1 p(l-a) ' -,
(3-2) pr? 1“mrpﬁlf(z)|ﬂp‘"" P P ntp)

Furthermore

ntp=1 £ )Y '
(33)  p- p(l-—ar)r<|(D :p_f( ))l<p+p(1-—a)r.

These results are sharp.
Proof. Since f(z) € Quip-1(a), in view of Theorem 1, we have

(B )atn, 1)Zap+k < Z( 2ER s, K)ape

(3.4)
< (1 - a)1
which evidently yields
. p(l1-a)
(3.5) Y apk < Ginmig P

k=1
Consequently, we obtain

= o}
1f(2)] 2P = rP*1 ) gy
k=1

(3.6) o)
p(l-a
>rP - GrOm +p)r”+1 (n > -p),
and
F@I ST+ ap
(3.7) k=1
P P(l - a), w21 (ﬂ > ""P)”

(p+1)n+p)
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which prove the assertion (3.1) of Theorem 3. Further

oG
1F'() 2 pr?™" =2 > "(p+ k)apsx
k==1

and -
IFF NS prP™ + 12 (p+ k)apts.
k==1
But from Theorem 1, it holds that

§(n,1) & s~ (P tk
RS (et Kapr < Y- BB, kyapus < (1 - )
b k=1 k=1 p

which gives that

= . p(l - a)
(8.8) ém Rapre € Tt (n>-p)
Hence
(3.9) ()] 2 pr?=t — ﬁ,p (n > —p)
and
(3.10) Fen<m + B s )

which prove the assertion (3.2) of Theorem 3.
Next, by using the second inequality in (3.4), we observe that

(Dn+P-—1f(.:.’))’ < ptr i(p + k)ﬁ(n, k)ap+k

(311) zp—1 ]
<p+p(1-a)r,
and
(Dﬂ+P"]f(:))l o0 ' ‘
(3.12) l pres 2p-r ;p + k)6(n, k)apr

2 p—p(l-a)r

which prove the assertion (3.3) of Theorem 3. Sharpness follows if we take

(3.13) f(z) =27 - T -I:—(:;)—(‘nél p)z”"'l (n>—p, z=%r).
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COROLLARY 2. Under the hypotheses of Theorem 3, f(z) is included
in a disc with its center at the origin and radius ry given by

_ p(l -a) _
(3.14) rp=1+ P+ Dntp) (n > -p),

and f'(z) is included in a disc with its center at the origin and radius r,
given by

_ pl-a) _
(3.15) re=p+ TFSVCET)) (n>-p).

n4p—1 ¢

Also 5-9—;,;;—1[3ELL is included in a disc with its center at the origin and
radius r3 given by

(3.16) ra =p+p(l-a).

The result is sharp with extremal function f(z) given by (3.13).

4. Integral Operators

THEOREM 4. Let the function f(z) defined by (1.10) be in the class
@n+p-1(a), and let F(z) be defined by

(4.1) F@):CZP/ £ £(t)dt.
0
Then
51’) for every ¢, ¢ > —p, F(z) € Quyp-1(a)
an

(ii) for every ¢, —p < ¢ < n, F(z) € Qu4p(a).
Proof. (i) From the representation of F(z), it follows that

o
F(z) = 2P ~ Z bpti 2"k,
k=1

where
c+p

m)%w»

bp+k = (
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Therefore
k k
Z(’”' )6(n k)b,,“—-g(” s é(n, )(ci+ﬁk)ap+k
- Z (p-; k)é(n,k)a,.q.k <(1-a),
k=1

since f(z) € Qu+p—1(a). Hence, by Theorem 1, F(z) € Qnyp—1(a).

(ii) In view of Theorem 1 it is sufficient to show that

5 (p:k)& LR T )apes < (1),
k=1

mce6(nk)-—(+p+k)6(n+1k)>01f—-p<c<n(k-—12 -) the
result follows from Theorem 1.
Putting ¢ = 1 — p in Theorem 4 we get the following

COROLLARY 3. Let the function f(z) defined by (1.10) be in the class
@n+p-1(a), and let F(z) be defined by

(4.2) Fo) = o5 1 [ %(;ldt

“*Jo
Then F(z) € Qu4p(a).

THEOREM 5. Let ¢ be a real number such that ¢ > —p. If F(z) €
Qn+p-1(a), then the function f(z) defined in (4.1) is p-valent in |z| < R
where

e o] (c+p)b(n,k)p 1*
(4.3) Rp—xnf[(c+p+k)(1_a)] (k>1).

The result is sharp.

Proof. Let F(z) = 2P — 3027 apiizP¥(apqs > 0). It follows from
(4.1) that

N 217 F(z))
f(z) = et

k
Z(C+P+ Yaperz®HE.

(¢>—p)
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To prove the result it suffices to show that

1
{p(_) l < pfor |z| < R.
Now
f'(2) | &~ c+ptk k
—1 —P|= Z;(°+W Jap+£2
—~ c+p+k k
< e .
B kz=1( c+p Jap+le]
Thus {é:} pl <pif
—~ c+p+k
(4.4) Y (RIS + B)apralel* <.
k=1 C+p
But Theorem 1 confirms that
(p+ k)é(n Ic)
Thus (4.4) will be satisfied if
ct+p+k (p+ k)b(n,k)

. CEPH Ry hy < RXEOILY (g5,
@s) (L4 < BIEERD, g2y
or if .

o < [ et pen ) (k> 1)

(e+p+h)l-a)f "= 77

127

The required result follows now from (4.6). The result is sharp for the

function

L detptb(i-a)
@n  fO=" - Crher i k2D
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THEOREM 6. Let the function F(:) defined by (1.10) be in the class
l=c n -1 ’
Quip-i(@), £(2) = ZZEREE, (¢ > —p). Then Re E5EL > g
(0 £ 8 <1) for |z| < ry, where

(4.8) r* = inf [ (C+p)(1"—ﬂ)

3
P % k+p+Hﬂ—aJ (k21).

The result is sharp.
Proof. 1t is sufficient to show that

(Dm+P-1 f(z)Y *
(4.9) e =1 £1= g for |z| <r}.
We have
(DMPlf(z)

Z("” (B ot byl

pzP~!

Hence the inequality (4.9) will be satisfied if

(410) Z(”‘;’” EEEE Ry, Byl <1 5.
k-—-

Since F(z) € Qu4p-1(a), from Theorem 1,

+k
Z pr?® )6(1’1 k)a,,+k <1~
k=1 p

and the inequality (4.10) will be satisfied if

(p+ k)c +p + k)o(n, kapir|z|k < (p+ k)b(n,k)apis
plc+p)(1-p5) - pl—a)

Solving it for || we obtain

(c+p)(1-8) 1*
(e+p+ k)l —~a)

Writing |2| = rj the result follows. The estimate is sharp for the function

|z} £ for k=1,2,--.

F(z) = 2P - -——-——-——————-—~——-p(1 —a) 2Ptk

B+ F)o(n. F) for som k.
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THEOREM 7. Let the function f(z) defined by (1.10) be in the class
T*(p,a) and let

— c + p c— =z -+k
(411)  F(z) /0 £ f(t)dt = 2? — Z(c s 2 Japs?tt.
Then
(i) F(z) € T*(p,a) for ¢ > —p
and
(ii) F(z) € C(p,a) for —p < ¢ < 0.
o0
Proof. (i) f(z) = 2P = ) _ apps2®** € T*(p, a) if and only if
k=1
Y (p+k-a)apk <(p—a)  [4,2].
k=1
For ¢ > —p,

c+ oo
Z(c+ ik)(P+k-—a)a,+k < Z(P+k“a)dp+k <(p-a).
k=1 k=1

Hence F(z) € T*(p,a).
(ii) Let —p < ¢ € 0. From (4. 11) we obtain
2F'(z) = (¢ + p)f(z) — cF(2).
Since T™(p, «) is closed under convex linear combinations [4.2], zF'(z) €
T*(p,a). That is F(z) € C(p, a).
5. Radii of Close-to-Convexity, Starlikeness and Convexity

THEOREM 8. Let the function f(z) defined by (1.10) be in the class
Qn+4p-1(a), then f(z) is p-valent close-to-convex of order (0 € 3 < p) in
lzl < 7'l(n’s b, a, ﬂ)s Where

(5.1) ri(n, p,a, f) = inf {@i(—?-?—f%ﬂ} ) (k >1).
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The result is sharp, with the extremal function f(z) given by (2.2).

Proof. We must show that

{T’ﬁ_.'.} ...p! < p—pfor |z] < ri(n,p,a,B).

We have
f'(z) , k
—or P <) (P4 F)apsrlzlt.
“ k=1
Thus |59 —p| <p-fif
(5:2) S B Daplalf < 1.
ol p—b

Hence, by Theorem 1, (5.2) will be true if

Pk (Pt k)b(n, k)
(Eplelt < opm s
or if
o [ =B)s(n,B)]E
(5.3) '45[-a?:3*](‘2”°

The theorem follows easily from (5.3).

THEOREM 9. Let the function f(z) defined by (1.10) be in the class
Qn+p-1(a), then f(z) is p-valent starlike of order f(0 < 8 < p) in |2| <
Tz(n,p, a, 5)’ where

(p— B)(p + k)é(n, k)
(p+k—pB)p(1-a)

13
(54) rg(n,p,a,ﬂ) = "’;‘f [ ] (k 2> 1)

The result is sharp, with the extremal function f(z) given by (2.2).

Proof. It is sufficient to show that | 5{-;—5—;1 -p| <p— Bforlz] <
r2(n,p, a, B). We have

zf@)_4< Sz Fapyalzlt
f(z) 1= a2l
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- pl <p-pif
k
(5.5) ,,2..:1 (p(-; ﬂ)ﬂ)a,,+k|z|k <L

Hence, by Theorem 1, (5.5) will be true if

(P + k - ﬂ) |z|k < (P + k)é(n,k)
(p—5) = p(l-a)
or if
(p— B)(p+ k)é(n, k)]
(56) <[RS Bt IR E T 2,

The theorem follows easily from (5.6).

COROLLARY 4. Let the function f(z) defined by (1.10) be in the class
Qnip-1(a), then f(2) is p-valent convex of order f(0 < B < p) in |2| <
ra(n,p,a, ), where

n, t
(5.7 r3(n,p,a, B) = [(p(fk B);)((l f)a)] (k>1).

The result is sharp, with the extremal function f(z) given by (2.2)

6. Closure Theorems
Let the function f;(z) be defined, for i =1,2,---, m, by

oo
(6.1) f,—(z) = zP — Z ap...k',-z”'“(ap.;.k,.' >0pe N)

k=1
forz e U.

THEOREM 10. Let the functions fi(z) ( = 1,2,--- ,m) defined by (6.1)
be in the class Qn4p-1(a). Then the function h(z) defined by

oC
(6.2) h(z) = 2P — Z bpprz?tE
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also belongs to the class Q,,.,.,,._](a), where

(6.3) bpyr = — Z Aptk,i-
z--l
Proof. Since fi(z) € Qu4p-1(a), it follows from Theorem 1, that

Z(p+k)5(nak)ap+k; <l-a, :=12,---,m
k=1

Therefore
+k +k 1<
(6.) >t s = ?_:(p o k){?n' §am,.}

k-—-
<1l-oa.
Hence by Theorem 1, 2(2) € Qa4p-1(a). Thus we have the theorem.

THEOREM 11. Let the functions fi(z) defined by (6.1) be in the classes
Qn+p-1(a;) for each i = 1,2,--- ,m. Then the function h(z) defined by

(6.5) =zP - — Z (Z Apik, .) 2Ptk

=1

is in the class Qn4p-1(a), where

(6‘6) “= lg}l‘?m{a'}
Proof. Since fi(z) € Quip-1(a;) for each 1 = 1,2,--- ;m, we observe
that
+k
(6.7) Z(” )6(n, K)aper < 1 a;

with the aid of Theorern 1. Therefore

Z(”* £)on, k) ( Zam,i)

=1

=~»Z{>:<

f=1

)5(", k)ap+k,i}

S;—n-Z(l-—a,')Sl——a.

=
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Thus
p+k 1 «
. . A —— i _<_ —
(6.8) Z( —)8(1, k) (m §GP+L, ) l1-a
which shows that h(z) € Qu4p-1(a), where a is given by (6.6).

THEOREM 12. Let the functions f;(z) defined by (6.1) be in the classes
Qu+p-1(a) for every i = 1,2, -+ ,m. Then the function h(z) defined by

m

(6.9) h(z) =) cifi(z) (ci20)
1=1

is also in the same class Qu4p-1(a), where

(6.10) zm:c,' = 1.

i=1

Proof. According to the definition of h(z), we can write that

(6.11) h(z) =27 — i (f: c.'a,,_;.k,.-) Pald

k=1 \i=1l

By means of Theorem 1, we have
(6.12) Z( £ )s(n, Kaperi <1-a
k=1

for every i = 1,2, ,m. Hence we can observe that

Z(p 5 )sn, k) (Z Ciap, )
k=1
(6.13) = Zc, {}:(” : £ )6(ns k)apek.i }

i=1 1
< (ici) l-a)=1-a
=]

which implies that h(z) € Qn4p-1(a). Thus we have the theorem.



134 M. K. Auof and H. E. Darwish

THEOREM 13. THe class Qu4p-1(a) is convex.

Proof. Let the functions fi(2) (i = 1,2) defined by (6.1) be in the class
Qn+p—-1(a). Thus it is sufficient to prove that the function

(6.14) h(z) = Ai(z) + (1= A)f2(z) (0<SA<T)
is in the class Qn4p—1{a). Since for 0 < A <1,

o o}
(6.15) h(z) =22 =Y {Aapri + (1= Napir2} 2P+,
k=1

with the aid of Theorem 1, we have

(o o)
k
(6.16) Z(”; Y6, k) {Apiks + (1= Napsra} S1—a
k=1

which implics that k(2) € Quyp-1(a). Hence Qn4p-1(a) is convex.
THEOREM 14. Let f,(z) = z? and

610 fpale) =5 = LB (k2 1> ),

for 0 < o < 1. Then f(z) € Qnyp-1(a) if and only if it can be expressed
in the form

(6-18) f(z) = ’\pfp(-'v') + Z )‘p+kfp+k(z),

k=1
where Ap4r > 0 (k> 1) and Xy + ) _ Apys = 1.

k=1
Proof. Supposc that

F(2) = Apf(z) + Z Aotk fpri(2)

P(l — Q)Aptk k
(6.19) Z p+k)b(n” G
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Then we get

— Ptk p(l —a)
R

o0
=(1-0a)) Mtk <l-a
k=1

Hence, by Theorem 1, f(z) € Qn4p-1(a).
On the other hand, suppose that the function f(z) defined by (1.10) is
in the class Q,4p-1(). Again, by using Theorem 1, we can show that

(6.21) tpri < B (k2 1m > )
Setting
(6.22) Apbs = 9'1-'—;(—1’%‘5%—’—“—)- (k210> -p).
and

[e o]
(6.23) Mo =1-) Jpie.

k=1
Hence, we can see that f(z) can be expressed in the form (6.18). This
completes the proof of Theorem 14.

COROLLARY 5. The extreme points of the class Qnip—1(a) are fp(2) =
2P and

1-—
Spti(z) =27 = G%(‘m(%):ﬁz"“ (k>1,n > —p).
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