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HYPERBOLICALLY CLOSE TO Q#
p -SEQUENCES

Rauno Aulaskari, Shamil Makhmutov, and Jouni Rättyä

Abstract. It is shown that each sequence lying sufficiently close in the

hyperbolic sense to a Q#
p -sequence for a meromorphic function f in the

unit disc is also a Q#
p -sequence for f .

1. Introduction and results

Let M(D) denote the class of meromorphic functions in the unit disc D =
{z ∈ C : |z| < 1} of the complex plane C. Green’s function in D with logarith-
mic singularity at a ∈ D is g(z, a) = − log |ϕa(z)|, where ϕa(z) = (a−z)/(1−az)
for all z ∈ D. The function ϕa is the Möbius transformation of D which in-
terchanges the point a ∈ D and the origin, and it is its own inverse. For
0 < p <∞, the class Q#

p consists of f ∈M(D) such that

‖f‖2
Q#
p

= sup
a∈D

∫
D
f#(z)2gp(z, a) dA(z) <∞,

where f#(z) = |f ′(z)|/(1 + |f(z)|2) is the spherical derivative of f at z and
dA(z) = rdr dθ for z = reiθ denotes the element of Lebesgue area measure on

D. It is known that Q#
1 coincides with the class UBC of functions in M(D) of

uniformly bounded Nevanlinna characteristic in D [5], and, for each p > 1, Q#
p

is the same as the class N of meromorphic normal functions [2], defined by the
condition

‖f‖N = sup
z∈D

f#(z)(1− |z|2) <∞.
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Let f ∈M(D). According to [1, Definition 1], a sequence {an}∞n=1 in D is a
qN -sequence for f if

lim
n→∞

f#(an)(1− |an|2) =∞.

Further, we say that {an}∞n=1 is an N -sequence for f if

lim sup
n→∞

f#(an)(1− |an|2) =∞.

Then {an}∞n=1 is an N -sequence for f if and only if one of its subsequences is
a qN -sequence for f . Similarly, if 0 < p < ∞, then {an}∞n=1 is a qp-sequence
for f ∈M(D) according to [1, Definition 2] if

lim
n→∞

∫
D
f#(z)2gp(z, an)dA(z) =∞,

and it is a Q#
p -sequence for f if

lim sup
n→∞

∫
D
f#(z)2gp(z, an) dA(z) =∞.

If {an}∞n=1 is a qN -sequence for f ∈ M(D), then each sequence {bn}∞n=1 in
D for which σ(an, bn)→ 0, as n→∞, is a qp-sequence for f for all 0 < p <∞
by [1, Theorem 1]. Here σ(z, w) = |ϕz(w)| is the pseudohyperbolic distance
between two points z and w in D. Hence each {bn}∞n=1 satisfying σ(an, bn)→ 0,
as n → ∞, is a Q#

p -sequence for f ∈ M(D) if {an}∞n=1 is an N -sequence for
f ∈M(D).

If {an}∞n=1 is a Q#
p -sequence for f ∈ M(D), then each sequence {bn}∞n=1 in

D for which σ(an, bn)→ 0, as n→∞, is also a Q#
p -sequence for f by the proof

of [1, Theorem 5]. The following theorem improves this result.

Theorem 1.1. Let 0 < p < ∞ and f ∈ M(D), and let {an}∞n=1 be a Q#
p -

sequence for f . Then there exists δ = δ(f, p) ∈ (0, 1) such that each sequence
{bn}∞n=1 in D satisfying σ(an, bn) ≤ δ for all n ∈ N is a Q#

p -sequence for f .

By using Theorem 1.1 we obtain the following improvement of [1, Theo-
rem 6].

Corollary 1.2. Let 0 < p < p′ < ∞ and f ∈ M(D), and let {an}∞n=1 be a
Q#
p -sequence for f . If

(1.1) lim sup
n→∞

∫
D\∆(an,r)

f#(z)2(1− |ϕan(z)|2)p dA(z) <∞

for some r ∈ (0, 1), then there exists δ = δ(f, p′) ∈ (0, 1) such that each sequence

{bn}∞n=1 in D satisfying σ(an, bn) ≤ δ for all n ∈ N is a Q#
p′-sequence for f .

In the forthcoming sections we will prove our results in the order of appear-
ance.
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2. Auxiliary result

To proof Theorem 1.1 we need the following auxiliary result.

Lemma 2.1. Let 0 < p < ∞ and f ∈ M(D), and let {an}∞n=1 be an N -
sequence for f . Then there exists δ = δ(f, p) ∈ (0, 1) such that each sequence
{bn}∞n=1 satisfying σ(an, bn) ≤ δ for all n ∈ N is a Q#

p -sequence for f .

Proof. Assume on the contrary to the assertion that for each δ ∈ (0, 1) there
exists a sequence {bn}∞n=1 in D such that σ(an, bn) ≤ δ for all n ∈ N, but

(2.1) K = K(f, p, {bn}) = sup
n∈N

∫
D
f#(z)2gp(z, bn) dA(z) <∞.

Let ∆(z, r) = {ζ ∈ D : σ(z, ζ) < r} denote the pseudohyperbolic disc with
center z ∈ D and radius r ∈ (0, 1), and let D(z,R) = {ζ ∈ C : |z − ζ| < R} be
the Euclidean disc with center z ∈ C and radius R > 0. By the hypothesis, we
can pick up a subsequence {a1

n}∞n=1 of {an}∞n=1 which is a qN -sequence for f .
Let {b1n}∞n=1 be the corresponding subsequence of {bn}∞n=1. Then (2.1) yields

K ≥
∫
D
f#(z)2gp(z, b1n) dA(z) ≥

∫
∆(b1n,r)

f#(z)2gp(z, b1n) dA(z)

≥
(

log
1

r

)p ∫
D(0,r)

f#
n (z)2 dA(z), n ∈ N, 0 < r < 1,

(2.2)

where fn = f ◦ϕb1n for all n ∈ N. Choose r = r(K, p) ∈ (0, 1) sufficiently small

such that (− log r)
p
> K/π. Then [3, Theorem 6] shows that {fn : n ∈ N} is a

normal family in D(0, r). Therefore there exists a subsequence {fnk}∞k=1 which
converges uniformly on compact subsets of D(0, r) to a meromorphic function
h on D(0, r) or to ∞. In the latter case, (2.2) yields

π > lim
k→∞

∫
D(0,r/2)

f#
nk

(z)2 dA(z) =∞,

which is a contradiction, and thus the assertion follows. If the limit h is mero-
morphic on D(0, r), then f#

nk
converges uniformly to h# on D(0, r/2) as k →∞.

Fix now δ = δ(r) > 0 sufficiently small such that ∆(ϕbn(an), δ) ⊂ D(0, r/2) for
all n ∈ N. This is possible because σ(an, bn) ≤ δ for all n ∈ N. Then, by the

uniform convergence on D(0, r/2),

lim
k→∞

∫
∆(a1nk ,δ)

f#(z)2gp
(
z, a1

nk

)
dA(z)

= lim
k→∞

∫
∆

(
ϕb1nk

(a1nk
),δ

) f#
nk

(ζ)2gp
(
ζ, ϕb1nk

(
a1
nk

))
dA(ζ)

≤ lim
k→∞

∫
D(0,r/2)

f#
nk

(ζ)2gp
(
ζ, ϕb1nk

(
a1
nk

))
dA(ζ)
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≤ sup
c∈D(0,δ)

∫
D(0,r/2)

h#(ζ)2gp(ζ, c) dA(ζ) <∞,

because h is meromorphic in D(0, r). Since {a1
n}∞n=1 is a qN -sequence for f ∈

M(D), so is its subsequence {a1
nk
}∞k=1. To complete the proof, it suffices to show

that for each qN -sequence {cn}∞n=1 for f ∈ M(D) there exists a subsequence
{cnj}∞j=1 such that

(2.3) lim
j→∞

∫
∆(cnj ,ρ)

f#(z)2gp
(
z, cnj

)
dA(z) =∞

for each ρ ∈ (0, 1) and 0 < p < ∞. This for ρ = δ contradicts what just
have been proved, and thus gives the assertion. To prove (2.3), we employ the
method used in the proof of [1, Theorem 4]. Assume on the contrary that there
exist ρ ∈ (0, 1) and 0 < p <∞ such that

C = C(f, p, {cn}) = sup
n∈N

∫
∆(cn,ρ)

f#(z)2gp (z, cn) dA(z) <∞.

Choose r = r(f, p, {cn}) ∈ (0, ρ) sufficiently small such that 2(− log r)−pC ≤ π.
Then a change of variable gives

C ≥
∫

∆(cn,r)

f#(z)2gp (z, cn) dA(z) ≥
(

log
1

r

)p ∫
D(0,r)

(f ◦ ϕcn)#(z)2 dA(z),

and hence gn = f ◦ϕcn satisfies g#
n (0) = f#(cn)(1−|cn|2) ≤ 1/r by Dufresnoy’s

theorem [4, p. 83]. This is a contradiction, and hence the claimed subsequence
exists. �

Note that the argument used in the end of the proof gives an easy way to
see that each N -sequence for f ∈M(D) is a Q#

p -sequence for f .

3. Proof of Theorem 1.1

Let {an}∞n=1 be a Q#
p -sequence for f , and let δ ∈ (0, 1) be that of Lemma 2.1.

Then either

(3.1) lim sup
n→∞

∫
D\∆(an,δ)

f#(z)2gp(z, an) dA(z) =∞

or

(3.2) lim sup
n→∞

∫
∆(an,δ)

f#(z)2gp(z, an) dA(z) =∞.

Assume first (3.1). The inequalities 1 − t ≤ − log t ≤ 1
t (1 − t), valid for all

0 < t ≤ 1, imply

g(z, an) ≤ 1

δ
(1− |ϕan(z)|) ≤ C1

δ
(1− |ϕbn(z)|) ≤ C1

δ
g(z, bn),
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where C1 = C1(δ) > 0 is a constant, for all z ∈ D \∆(an, δ) and bn ∈ ∆(an, δ).
It follows that ∫

D\∆(an,δ)

f#(z)2gp(z, an) dA(z)

≤
(
C1

δ

)p ∫
D\∆(an,δ)

f#(z)2gp(z, bn) dA(z)

≤
(
C1

δ

)p ∫
D
f#(z)2gp(z, bn) dA(z), bn ∈ ∆(an, δ),

and hence every {bn}∞n=1 satisfying σ(an, bn) ≤ δ for all n ∈ N is a Q#
p -sequence

for f .
Assume now (3.2). Then there either exists a qN -sequence {cnk}∞k=1 sat-

isfying σ(ank , cnk) ≤ δ/2 for all k ∈ N or a constant C2 > 0 such that
f#(z)(1 − |z|2) ≤ C2 for all z ∈ ∆(an, δ/2) and all n ∈ N. In the first case,
{bnk}∞k=1 is a Q#

p -sequence for f by Theorem 2.1 if σ(ank , bnk) ≤ δ/2 for all
k ∈ N because then σ(cnk , bnk) ≤ σ(cnk , ank) +σ(ank , bnk) ≤ δ/2 + δ/2 = δ. In
the latter case, by a change of variable,

(3.3)

∫
∆(an,δ/2)

f#(z)2gp(z, an) dA(z) ≤ C2
2

∫
D(0,δ/2)

(
log 1
|ζ|

)p
(1− |ζ|2)

dA(ζ)

<∞, n ∈ N.

If now σ(an, bn) ≤ 1−δ
2 for all n ∈ N, then ∆(an, δ) ⊂ ∆(bn,

1+δ
2 ) because

σ(z, bn) ≤ σ(z, an) + σ(an, bn) ≤ δ + 1−δ
2 = 1+δ

2 for all z ∈ ∆(an, δ). This
observation together with (3.2) and (3.3) shows that∫

∆(bn,
1+δ
2 )\∆(an,δ/2)

f#(z)2gp(z, bn) dA(z)

≥
(

log
2

1 + δ

)p ∫
∆(an,δ)\∆(an,δ/2)

f#(z)2 dA(z)

≥

(
log 2

1+δ

log 2
δ

)p ∫
∆(an,δ)\∆(an,δ/2)

f#(z)2gp(z, an) dA(z) .

Therefore

lim sup
n→∞

∫
∆(bn,

1+δ
2 )\∆(an,δ/2)

f#(z)2gp(z, bn) dA(z) =∞ ,

and thus {bn}∞n=1 is a Q#
p -sequence for f . �

4. Proof of Corollary 1.2

The hypothesis (1.1) implies

lim sup
n→∞

∫
∆(an,r)

f#(z)2gp(z, an) dA(z) =∞.
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If r ≤ 1
e , then gp(z, an) ≤ gp

′
(z, an) for all z ∈ ∆(an, r), and hence {an}∞n=1

is a Q#
p′ -sequence for f . The assertion now follows by Theorem 1.1. If r > 1

e ,
then either

lim sup
n→∞

∫
∆(an,

1
e )

f#(z)2gp(z, an) dA(z) =∞

or

lim sup
n→∞

∫
∆(an,r)\∆(an,

1
e )

f#(z)2gp(z, an) dA(z) =∞.

In the former case we may proceed as before, meanwhile in the latter case we
have

gp(z, an) ≤ 1

|ϕan(z)|p
(1− |ϕan(z)|)p ≤ ep

(1− r)p′−p
gp

′
(z, an)

for all z ∈ ∆(an, r) \∆
(
an,

1
e

)
. Again the assertion follows by Theorem 1.1.�
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