• Title/Summary/Keyword: $Pt_3Ni$

Search Result 166, Processing Time 0.022 seconds

PtNi and PtRuNi Alloy catalysts for Methanol Electrooxidation (메탄올 산화 반응을 위한 PtNi과 PtRuNi 합금 촉매)

  • Park Kyeong Won;Gwon Bu Gil;Choi Jong Ho;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.37-42
    • /
    • 2001
  • The electrooxidation of methanol was studied using Pt, PtNi(1.1 and 3:1), PtRuNi and PtRu(1:1) alloy nanoparticles in sulfuric acid solution for application to a direct methanol fuel cell. The PtNi and PtRuNi alloys showed excellent catalytic activities compared to those of pure Pt and PtRu. The role of Ni in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The XPS data confirm that the chemical states of Pt are exclusively metal as well as the presence of metallic Ni, NiO, $Ni(OH)_2$, NiOOH, metallic Ru, $RuO_2$, and $RuO_3$. Negative shifts of the binding energies of Pt for the PtNi alloy nanoparticles were determined by XPS measurements. This can be explained based by assuming that the enhanced activities of PtNi alloys for methanol electrooxidation were caused by the oxide states of Ni and by the change in the electronic structure of Pt component in the alloys.

  • PDF

Electronic structure and magnetism of catalytic material Pt3Ni surfaces: Density-functional study

  • Sharma, Bharat Kumar;Kwon, Oryong;Odkhuu, Dorj;Hong, Soon Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.172-172
    • /
    • 2012
  • A Pt-skin $Pt_3Ni$(111) surface was reported to show high catalytic activity. In this study, we investigated the magnetic properties and electronic structures of the various oriented surfaces of bulk-terminated and Pt-segregated $Pt_3Ni$ by using a first-principles calculation method. The magnetic moments of Pt and Ni are appreciably enhanced at the bulk-terminated surfaces compared to the corresponding bulk values, whereas the magnetic moment of Pt on the Pt-segregated $Pt_3Ni$(111) surface is just slightly enhanced because of the reduced number of Ni neighboring atoms. Spin-decomposed density of states shows that the dz2 orbital plays a dominant role in determining the magnetic moments of Pt atoms in the different orientations. The lowering of the d-band center energy (-2.22 eV to -2.46 eV to -2.51 eV to -2.65 eV) in the sequence of bulk-terminated (100), (110), (111), and Pt-segregated (111) may explain the observed dependence of catalytic activity on surface orientation. Our d-band center calculation suggests that an observed enhanced catalytic activity of a $Pt_3Ni$(111) surface originates from the Pt-segregation.

  • PDF

Dynamic LEED를 이용한 Ni/Pt(001)의 구조분석

  • 김상현;박종윤;민항기;변대현;서지근;김재성
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.174-174
    • /
    • 1999
  • Pt(001)의 깨끗한 표면은 재배열된 (5x20) 또는 (nxn) 구조를 갖는다. 이러한 재배열된 구조는 소?의 가스를 흡착에 대해서도 (1x1)구조로 다시 재배열되는 재배열인 쉽게 풀리는 준안정적 재배열 구조를 갖는 표면이다. Pt(100) 표면 위에 Ni과 같은 금속을 흡착시키는 경우도 동일하게 표면의 장력을 해소시켜 (1x1) 표면을 만든다. Pt와 Ni과 같은 덩어리 상태에서 Pt와 Ni가 질서있게 교차되어 배열되는 합금이 쉽게 이루어지는 물질들로 잘 알려져 있고, 이 합금은 Pt나 Ni와 동일한 규칙적인 fcc 구조를 갖는다. 따라서 Pt(100) 표면 위에 Ni를 흡착시키는 것은 Nm/Cu(100)과 같은 표면합금이나 Mn/Ag(1000에서 보이는 2층으로 된 표면 합금과 같은 표면 근방에 국한된 질서있는 표면 합금의 가능성이 있다. 또한 Ni/Pt(100)은 Ni과 Pt가 3대 1의 비로 조합될 때 나타나는 Ni3Pt의 층별구조인 표면에 Ni가 채워져 있고, 다음 층에 Ni와 Pt가 50%씩 질서 있게 섞여 있는 형태의 구조 즉 표면 밑 합금이 나타날 수 있는 가능성이 있는 물질계라는 점에서 관심을 갖게 한다. 본 연구는 LEED를 이용하여 Ni/Pt(100) 박막의 층별구조를 확인하고자 한다. PtNi 합금은 ATA(average t-matirx approximation)을 이용한 LEED 분석이 잘 적용되는 물질계로 알려져 있고, 본 연구는 ATA를 적용한 LEED I/V 분석을 통하여 Ni가 성장된 Pt(100) 표면의층별 농도비와 층별 구조를 구하고자 한다. 실험은 기본 압력이 3x10-11torr인 챔버에서 이루어졌으며, 증착시 압력은 5x10 torr이고, 증착은 열증발 방법을 이용하였다. Ni가 증착됨에 따라 (nxn) 재배열 표면에 기인한 extra spot들의 세기는 점차 감소하고 특정 증착량 이상에서부터 이 (nxn)의 spot들이 사라지고 깨끗한 (1x1) 패턴이 나타난다. 계속되는 증착량의 증가에 대해서도 이 (1x1) 형태는 유지되며, 표면의 질서에 따르는 c(2x20 패턴은 보이지 않았다. (1x1) LEED spot를 보임에도 불구하고 덩어리 절단 형태의 구조를 기반으로 한 LEED I/V 분석으로는 잘 맞출수 없었다. 이것은 Ni가 일정 이상 흡착된 경우 그 구조가 덩어리 절단 형태의 fcc(100) 구조와 벗어난 구조를 가지는 것으로 보인다.

  • PDF

Magnetic Properties and Electronic Structure of $Pt_3Ni$ (001), (110) and (111) Surfaces: Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.129-129
    • /
    • 2011
  • The limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of properties and electronic structures of seven layered $Pt_3Ni$ (001), (110), and (111) surfaces. The first principle method based on density functional theory (DFT) is carried out. It is found that the bulk $Pt_3Ni$ has a ferromagnetic ground state with the ordered fcc type L12 structure, which is in good agreement with other results. Non magnetic Pt has the induced magnetic moment due to the strong hybridization between 3d Ni and 5d Pt. The magnetic moment of Pt and Ni enhanced on the surface of each due to surface effect however the magnetic moment of surface Pt in the Pt-segregated Pt3Ni (111) decreased and the magnetic moment of Ni in Ni rich subsurface increased significantly. The calculated d band centers of Pt explain the possibilities for oxygen absorption and play the important roles in altering the catalytic properties. The spin polarized densities of states are presented in order to understand physical properties of Pt in different surfaces in detail.

  • PDF

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF

Blocking of Zeolite Pore by Loading Ni-Pt Nanoparticles for Maximization of Isomerization Selectivity

  • Bhavani, A. Geetha;Reddy, N. Subba
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.658-664
    • /
    • 2020
  • Zeolite HY is wet impregnated with Ni (0.1, 0.3, 0.4, 0.5 wt%), Pt (0.1 wt%) and reduced in presence of hydrogen to form nanosized particles of Ni and Pt. All the catalysts were characterized by XRD, TEM, ESCA, NH3-TPD, Pyridine adsorbed FT-IR and BET. Characterization results confirm that the Ni and Pt fractions effectively rehabilitated the physio-chemical properties of the zeolite HY catalysts. Further, all the reduced catalyst were screened with hydroisomerization of m-xylene at LHSV = 2.0 h-1 in the temperature range 250-400 ℃ in steps of 50 ℃ in hydrogen atmosphere (20 ml/g). The addition of Ni to Pt catalyst increases hydroisomerization conversion, as well as maximizes p-xylene selectivity by restricting the pore size. The increasing trend in activity continues up to 0.3 wt% of Ni and 0.1 wt% Pt addition over zeolite HY. The increasing addition of Ni increases the total number of active metallic sites to exposed, which increases the metallic sites/acid sites ratio towards the optimum value for these reactions by better balance of synergic effect for stable activity. The rate of deactivation is pronounced on monometallic catalysts. The results confirm the threshold Ni addition is highly suitable for hydroisomerization reaction for product selectivity over Ni-Pt bimetallic/support catalysts.

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

  • Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.95-105
    • /
    • 2015
  • In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.

Preparation and Characterization of Pt-Ni Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis by Spontaneous Reduction Reaction (자발적 환원반응에 의한 음이온 교환막 수전해용 Pt-Ni 나노 촉매 제조 및 특성)

  • ZHANG, PENGFEI;LEE, JAEYOUNG;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.202-208
    • /
    • 2022
  • Pt-Ni nanocatalysts were loaded on carbon black by spontaneous reduction reaction of platinum (II) acetylacetonate and nickel (II) acetylacetonate, and they were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), energy dispersive x-ray analyzer (EDS), BET surface area and fuel cell test station. The distribution of the Pt and Ni nanoparticles was observed by TEM, and the loading weight of Pt-Ni nanocatalysts on the carbon black was measured by TGA. The elemental ratio of Pt and Ni was estimated by EDS. It was found that the loading weight of Pt-Ni nanoparticles was 5.54 wt%, and the elemental ratio of Pt and Ni was 0.48:0.35. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC) (방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성)

  • Kim, Sang Kyum;Park, Ji Yun;Hwang, Sun Choel;Lee, Do Kyun;Lee, Sang Heon;Rhee, Young Woo;Han, Moon Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.

Pt-Ru, Pt-Ni bi-metallic catalysts for heavy hydrocarbon reforming (고 탄화수소 개질을 위한 Pt-Ru, Pt-Ni 이원금속촉매에 관한 연구)

  • Lee, Sanghp;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.97.2-97.2
    • /
    • 2011
  • Pt-Ru and Pt-Ni bimetallic catalysts were prepared and tested for heavy hydrocarbon reforming. Metals were supported on CGO($Ce_{0.8}Gd_{0.2}O_{2.0-x}$) by incipient wetness method. The prepared catalysts were characterized by Temperature programmed reduction(TPR). Oxidative steam reforming of n-dodecane was conducted to compare the activity of the catalysts. The reforming temperature was varied from $500^{\circ}C$ to $800^{\circ}C$ at fixed $O_2$/C of 0.3, $H_2O$/C of 3.0 and GHSV of 5,000/h.Reduction peaks of metal oxide, surface CGO and bulk CGO were detected. Reduction temperature of metal oxide decreased over the bi-metallic catalysts. It is considered that interaction between metals leads to decrease interaction between metal and oxygen. On the other hands, reduction temperatures of surface CGO were dectected in the order of Pt-Ru > Pt-Ni > Pt. low reduction temperatures of surface CGO indicates the low activation energy for oxygen ion conduction to metal. Oxygen ion conduction is known as de-coking mechanism of ionic conducting supports such as CGO. In activity test, fuel conversion was in the same order of Pt-Ru > Pt-Ni > Pt. Especially, 100% of fuel conversion was obtained over Pt-Ru catalysts at $500^{\circ}C$.

  • PDF