• Title/Summary/Keyword: $PVA/ AgNO_3$ solution

Search Result 4, Processing Time 0.017 seconds

Preparation of Poly (Vinyl Alcohol) Nanofibers Containing Silver Nanoparticles by Gamma-ray Irradiation

  • Kim, Yun-Hye;Shin, Junwha;Youn, Min-Ho;An, Sung-Jun;Lim, Youn-Mook;Gwon, Hui-Jeong;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.129-133
    • /
    • 2008
  • PVA nanofibers containing silver nanoparticles were prepared by two methods. The first method was electrospinning of irradiated solution. The prepared $PVA/AgNO_3$ solution was irradiated by gamma-rays. And then the irradiated solution was electrospun. The second method was irradiation of electrospun nanofibers. Nanofibers prepared by electrospinning of unirradiated $PVA/AgNO_3$ solution. The morphology of the nanofibers was observed with a SEM, TEM. When the irradiated $PVA/AgNO_3$ solution were electrospun, the average size of the Ag nanoparticles was increased, but their number was decreased.

Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles in Poly(vinyl alcohol) Prepared by Gamma-Ray Irradiation (감마선에 의해 제조된 Poly(vinyl alcohol) 하이드로젤에서 Silver Nanoparticle의 제조 및 항균 특성)

  • Kim, Hyun-A;Park, Jong-Seok;Choi, Jong-Bae;Lim, Youn-Mook;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.71-75
    • /
    • 2012
  • In this study, silver nanoparticles (AgNPs) have been prepared by using aqueous $AgNO_3$ solution in the poly(vinyl alcohol) (PVA) hydrogels. PVA powders were dissolved in deionized water, and then irradiated by gamma-ray with a radiation dose of 50 kGy to make hydrogels. PVA hydrogels were dipped into 0.01 and 0.05 M $AgNO_3$ solution for 1 h respectively. After that, the swollen hydrogels were irradiated by gamma-ray at various doses to form AgNPs. UV-vis analysis indicated that the concentration of Ag NPs was enhanced by increasing absorbed dose and the concentration of $AgNO_3$. FE-SEM measurements provided further evidence for the successful formation of Ag NPs in PVA hydrogels. Also, the antibacterial effect of PVA hydrogels stabilized AgNPs against Gram-negative bacteria (S.aureus and E.coli) in liquid as well as on solid growth media has been investigated. The AgNPs consolidated in PVA hydrogel networks have an excellent antibacterial effect.

Preparation of Silver Nanoparticles on the Poly(vinyl alcohol)/poly(ethylene glycol) Hydrogel (Poly(vinyl alcohol)/poly(ethylene glycol) 하이드로겔에서의 silver nanoparticles의 제조)

  • Park, Jong-Seok;Kim, Hyun-A;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.119-124
    • /
    • 2011
  • Silver nano-particles (AgNPs) have attracted much attention for centuries due to their unique optical properties, electrical conductivities, oxidative catalysis, and antibacterial effect. In this study, AgNPs have been prepared by using aqueous $AgNO_3$ solution in the poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels. PVA and PEG powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make hydrogels. PVA/PEG hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. FE-SEM is used to observe the formation of AgNPs as a function of the content of PEG and the irradiation dose. Also, AgNPs in the PVA/PEG hydrogels were monitored by UV-Vis. It is observed that the content of PEG and gamma-ray irradiation in the hydrogel is crucial to the formation of AgNPs. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Preparation and Characterization of transparent electrode based on polymer/metal oxide composite via electrospinning (전기 방사를 이용한 고분자/금속산화물 복합소재 기반의 투명전극 제조 및 특성 분석)

  • Kang, Hye Ju;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1553-1560
    • /
    • 2021
  • We have confirmed that optimized transmittance and surface resistance by electrospinning time, also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances is showed applicability to next generation flexible displays such as solar cells, displays, and touch screens. → We have confirmed the optimized transmittance and surface resistance by electrospinning time Also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances showed applicability to next generation flexible displays such as solar cells, displays, and touch screens.