• 제목/요약/키워드: $PM_{2.5}$ concentrations

검색결과 1,717건 처리시간 0.028초

Reduction of Particulate Matters Levels in Railway Cabins in Korea

  • Park, Duck-Shin;Kwon, Soon-Bark;Cho, Young-Min;Park, Eun-Young;Jeong, Woo-Tae;Lee, Ki-Young
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.51-56
    • /
    • 2012
  • Objectives: High concentrations of airborne particulate matters (PM) can affect the health of passengers using public transportation. The objectives of this research were to develop a PM control system for a railway cabin and to evaluate the performance of the device under conditions of an actual journey. Methods: This study measured the concentrations of $PM_{10}$ and $PM_{2.5}$ simultaneously in a reference cabin and a cabin with the PM control device. Results: The average $PM_{10}$ concentration in the reference cabin was 100 ${\mu}g/m^3$, and the $PM_{10}$ concentration in the cabin with the control device was 79 ${\mu}g/m^3$. While the overall control efficiency of the control device was 15.4%, reduction was more effective for peak $PM_{10}$ concentration. However, $PM_{2.5}$ levels did not differ greatly between the reference cabin and the cabin with the control device. The ratio of $PM_{2.5}$ to $PM_{10}$ was 0.37. $PM_{10}$ concentrations in cabins were not associated with ambient concentrations, indicating that the main sources of $PM_{10}$ were present in cabins. Additionally, average $CO_2$ concentration in the cabins was 1,359 ppm, less than the maximum of 2,000 ppm set out by the Korean Ministry of Environment's guideline. The $CO_2$ concentration in cabins was significantly associated with the number of passengers: the in-cabin concentration = $23.4{\times}N+460.2$, where N is the number of passengers. Conclusions: Application of the PM control device can improve $PM_{10}$ concentration, especially at peak levels but not $PM_{2.5}$ concentration.

국소환경 모델을 이용한 초미세먼지(PM2.5) 노출 기여율 평가 (Evaluation of PM2.5 Exposure Contribution Using a Microenvironmental Model)

  • 신지훈;최영태;김동준;민기홍;우재민;김동준;신정현;조만수;성경화;이종대;양원호
    • 한국환경보건학회지
    • /
    • 제48권2호
    • /
    • pp.59-65
    • /
    • 2022
  • Background: Since people move through microenvironments rather than staying in one place, they may be exposed to both indoor and outdoor PM2.5 concentrations. Objectives: The aim of this study was to assess the exposure level of each sub-population group and evaluate the contribution rate of the major microenvironments. Methods: Exposure scenarios for sub-population groups were constructed on the basis of a 2019 Time-Use survey and the previous literature. A total of five population groups were classified and researchers wearing MicroPEM simulated monitoring PM2.5 exposure concentrations in real-time over three days. The exposure contribution for each microenvironment were evaluated by multiplying the inhalation rate and the PM2.5 exposure concentration levels. Results: Mean PM2.5 concentrations were 33.0 ㎍/m3 and 22.5 ㎍/m3 in Guro-gu and Wonju, respectively. When the exposure was calculated considering each inhalation rate and concentration, the home showed the highest exposure contribution rate for PM2.5. As for preschool children, it was 90.8% in Guro-gu, 94.1% in Wonju. For students it was 65.3% and 67.3%. For housewives it was 98.2% and 95.8%, and 59.5% and 91.7% for office workers. Both regions had higher exposure to PM2.5 among the elderly compared to other populations, and their PM2.5 exposure contribution rates were 98.3% and 94.1% at home for Guro-gu and Wonju, respectively. Conclusions: The exposure contribution rate could be dependent on time spent in microenvironments. Notably, the contribution rate of exposure to PM2.5 at home was the highest because most people spend the longest time at home. Therefore, microenvironments such as home with a higher contribution rate of exposure to PM2.5 could be managed to upgrade public health.

커피전문점에서 흡연 및 금연구역의 분리형태에 따른 PM2.5 농도 비교 (Comparison of PM2.5 Concentrations in Smoking and Non-smoking Areas by Division System in Coffee Shops)

  • 염지선;황윤형;서수연;김태현;이기영
    • 한국환경보건학회지
    • /
    • 제37권1호
    • /
    • pp.44-49
    • /
    • 2011
  • Under the Enforcement Rules of the National Health Promotion Act, smoking areas in coffee shops in Korea should be divided off from other areas. The effect on indoor air quality of different division types for smoking areas was evaluated. Using real-time monitors, fine particulate matter <2.5 ${\mu}m$ in diameter ($PM_{2.5}$) concentrations were measured simultaneously in the smoking and non-smoking areas of 30 coffee shops in Seoul. Average $PM_{2.5}$ concentrations in smoking and non-smoking areas were 132 ${\mu}g/m^3$ and 52 ${\mu}g/m^3$, respectively; significantly different. Average $PM_{2.5}$ concentrations in non-smoking areas were 39 ${\mu}g/m^3$ in the glass-wall type and 64 ${\mu}g/m^3$ in the separate-floor type. These $PM_{2.5}$ levels were above the US national ambient air quality standard of 35 ${\mu}g/m^3$. Although indoor $PM_{2.5}$ levels in non-smoking areas were reduced by the division, the rates of reduction were not significantly different by division type. Our results demonstrated that $PM_{2.5}$ from smoking areas can infiltrate into non-smoking areas. Therefore, a complete indoor smoking ban in coffee shops is the only way to protect customers and workers in non-smoking areas.

탄광부 진폐증자의 폐조직내 금속농도 (Metal Concentrations in Lungs of Coal Workers' Pneumoconiosis Patients)

  • 최호춘;정호근;김해정;전향숙;이관형
    • 한국산업보건학회지
    • /
    • 제1권1호
    • /
    • pp.89-99
    • /
    • 1991
  • The metal concentrations in lungs from 12 coal workers' pneumoconiosis(CWP) patients and 6 controls, who were not exposed occupationally to coal mine dust and metals during their life time, were analyzed by atomic absorption spectrophotometry. 1. Copper, lead, nickel, magnesium, manganese, zinc and iron concentrations in lungs of CWP patients were $1.10{\pm}0.088$, $1.12{\pm}0.068$, $0.22{\pm}0.020$, $113.7{\pm}1.31$, $0.19{\pm}0.012$, $10.2{\pm}1.54$, $426.7{\pm}2.63{\mu}g/g$ wet weight. 2. Copper, lead, nickel, magnesium, manganese, zinc and iron concentrations in lungs of controls were $1.10{\pm}0.013$, $0.85{\pm}0.007$, $0.10{\pm}0.008$, $87.6{\pm}1.29$, $0.18{\pm}0.005$, $10.6{\pm}1.44$, $164.9{\pm}3.29{\mu}g/g$ wet weight. 3. The ratios of concentrations for copper, lead, nickel, magnesium, manganese, zinc, and iron in lungs for CWP patients and controls were 1 : 1, 1.32 : 1, 2.20 : 1, 1.30 : 1, 1.06 : 1, 0.92 : 1, 2.58 : 1, respectively. There were significant differences in concentrations of lead, nickel, magnesium, iron by group(p<0.05). 4. There was no significant difference in metal concentrations of right upper lobe, right lower lobe, left upper lobe and left lower lobe for both CWP patients and controls (p>0.05, p>0.05). 5. In CWP patients lead was well correlated with nickel showing a rank correlation coefficient of 0.533, and zinc was correlated with copper showing a rank correlation coefficient of 0.476. 6. The concentrations of copper, nickel, maganese, and zinc in Korean CWP patients were lower than those in foreign CWP patients.

  • PDF

Effect of Urban Parks on Carbon and PM2.5 Reduction in Gangneung

  • Choi, Seong-Gyeong;Jo, Hyun-Kil
    • Journal of Forest and Environmental Science
    • /
    • 제38권1호
    • /
    • pp.64-73
    • /
    • 2022
  • Increasing carbon and PM2.5 concentrations have been emerging as serious environmental issues worldwide. The purpose of this study was to quantify carbon and PM2.5 reduction by urban parks in Gangneung, Korea. A total of 35 parks were sampled by applying a random sampling method to survey tree planting structures and the areal distribution of land cover types of urban parks. These survey data and the Green Evaluation Technique (GET) computer program were used to estimate carbon and PM2.5 reduction by trees. Mean tree density and cover in the study parks were 3.5±0.2 tree/100 m2 and 44.5±3.0%, respectively. Annual carbon uptake and PM2.5 deposition per unit area by trees averaged 2.8±0.2 t/ha/yr and 30.2±2.8 kg/ha/yr. Gangneung's urban parks annually offset the carbon emissions by 3.4% and the PM2.5 emissions by 3.5%. Thus, urban parks played a significant role in reducing atmospheric carbon and PM2.5 concentrations. Total annual carbon uptake and PM2.5 deposition of urban parks in Gangneung were about 1,338.2 t/yr and 14,433.2 kg/yr. This study is expected to contribute to raising awareness of the role and importance of urban parks regarding carbon and PM2.5 reduction.

도로터널 내 공기질 측정과 Bag Filter를 이용한 미세먼지 제거 성능평가 (Air quality monitoring and evaluation of bag filter performance for removal of fine particulates in roadway tunnels)

  • 김범석;박일건;정동균;이상돈;홍민선
    • 한국터널지하공간학회 논문집
    • /
    • 제17권5호
    • /
    • pp.523-531
    • /
    • 2015
  • 수도권에 있는 4개 도로터널을 선정해 오전 7시부터 오전 9시까지 미세먼지와 벤젠을 측정한 결과 PM10은 $111{\sim}268{\mu}g/m^3$으로 연간 대기환경기준치인 $50{\mu}g/m^3$을 2~5배 이상 초과하였고 PM2.5는 $35{\sim}65{\mu}g/m^3$으로 대기환경기준치인 $25{\mu}g/m^3$을 1.5배~2.5배 초과 하였다. 벤젠의 경우 300~500 ppb로 나타나 대기환경기준치인 1.5 ppb의 200~330배 초과하였다. 국내 장대터널에서 4개월 연속 측정한 결과 PM10의 경우 $30{\sim}400{\mu}g/m^3$으로 나타났고 Bag filter를 이용한 PM10의 제거효율은 97% 이상으로 나타나 향후 터널 내 대기질 개선에 기여할 것으로 판단된다. 벤젠의 경우 250~350 ppb로 측정되었다.

광역적 이동 연무 탐지를 위한 지상 질량 농도를 고려한 적외채널 밝기온도차 경계값 범위 분석 (An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze)

  • 김학성;정용승;조재희
    • 한국지구과학회지
    • /
    • 제37권7호
    • /
    • pp.434-447
    • /
    • 2016
  • 2011-2015년 동안 한국 중부 태안과 청주 강내의 배경 관측지점에서 측정한 PM10, PM2.5 질량 농도를 분석하였다. 황사 사례를 제외한 PM10 질량 농도의 계절변동에서 겨울-봄 동안 높은 농도는 서풍 기류에 의한 영향이 반영되고 있으며, 여름에는 북태평양 기단과 잦은 강수로 낮은 수준을 보이고 있었다. 따라서, 일평균 PM10 질량 농도 $81{\mu}gm^{-3}$ (미세먼지 예보 '약간 나쁨' 이상) 이상의 사례도 겨울-봄 동안에 발생이 많으며, 특히 중국 동부 배출원에 가까운 태안에서 더 많은 사례가 발생하고 있었다. 인위적으로 발생한 연무는 입경 $2.5{\mu}m$ 미만 입자의 구성 비율이 높다. 천리안 위성의 밝기온도차 분석에서 대기와 입자가 작은 연무는 $-0.5^{\circ}K$ 이상에서 관측된다. 2011-2015년 동안 태안과 청주 강내에서 관측한 연무 사례일의 PM10 질량 농도와 NOAA 19 위성 밝기온도차를 분석하였다. PM10 질량 농도는 $200{\mu}g\;m^{-3}$ 보다 낮지만, PM2.5/PM10 질량 농도비는 0.4보다 높고 밝기온도차는 $-0.3-0.5^{\circ}K$ 범위에 분포하고 있었다. 그러나, PM10 질량 농도 $190{\mu}g\;m^{-3}$ 이상인 황사 사례의 밝기온도차는 PM2.5/PM10 질량 농도비가 0.4보다 낮고, 밝기온도차는 $-0.7^{\circ}K$ 이하의 범위에 분포하고 있었다. 이러한 연무의 밝기온도차 경계값 범위를 적용한 결과는 MODIS AOD, OMI AI의 에어로졸 분포 범위와 일치하였다.

대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사 (Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations)

  • 유근혜;박승식;김영성;신혜정;임철수;반수진;유정아;강현정;서영교;강경식;조미라;정선아;이민희;황태경;강병철;김효선
    • 한국대기환경학회지
    • /
    • 제34권1호
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

우리나라 일부지역의 입자상 물질 농도에 대한 연구 (A study of particulate matters in Korea)

  • 손부순;공미연;박종안;양원호;김종오
    • 환경위생공학
    • /
    • 제18권4호
    • /
    • pp.24-35
    • /
    • 2003
  • Recent epidemiologic studies revealed that the concentration of air pollutants and fine particulated matter have some effects on health status and are associated with increased mortality and morbidity. The purpose of this study was to characterize background mass concentration of fine particle (PM2.5) and metallic composition from September 2001 to August 2002 in comparison with a medium city, Asan and metropolitan city, Seoul. Conclusively, proper management for fine particles was required in a medium city, Asan, considering the concentrations of metallic elements in fine particles in Asan were relatively higher than those in Seoul. The results were as followed. 1. Average mass concentrations of fine particles in Asan and Seoul were 37.70(${\pm}18.41{\;}{\mu}g/\textrm{m}^3$) and 5.83(${\pm}38.50$) ${\mu}g/\textrm{m}^3$, respectively. When the weather conditions were classified as normal and yellow-sand, measured average mass concentrations of fine particles in yellow-sand weather condition was significantly higher than those of normal weather condition in both cities (p<0.05). 2. Depending on seasons, measured average mass concentrations of fine particles in Asan and Seoul in spring were 47.76(${\pm}19.07$) ${\mu}g/\textrm{m}^3$m and 61.53 (${\pm}4.37$) ${\mu}g/\textrm{m}^3$, respectively. In summer, the average mass concentrations of fine particles in Asan and Seoul were 29.44(${\pm}9.85$) ${\mu}g/\textrm{m}^3$ and 25.42(${\pm}8.10$) ${\mu}g/\textrm{m}^3$, respectively. Especially, the concentration was the highest in spring and the lowest in summer among four seasons. 3. Average concentrations of manganese(Mn), iron(Fe), chromium(Cr), cadmium(Cd), lead(Pb) and silicon(Si) in fine particles in Asan were significantly higher in Seoul (p<0.05). Average concentration of Si in fine particle in Asan was statistically higher than that of Seoul during yellow -sand condition (p<0.05). 4. Considering the characterization of four seasons, average Pb concentration of fine particle in Asan is significantly higher than that of Seoul in spring(p<0.01). In summer, average Mn and Cr concentrations of fine particle in Asan is higher than those of Seoul (p<0.05). Average Mn, Fe. Cr and Si concentrations in fall (p<0.05), and average Mn, Fe, Cr, Pb, and Si concentrations in winter (p<0.05) in Asan were higher than those of Seoul, respectively. 5. Mass concentrations of each Mn, Fe, Cd and Si in fine particles were significantly correlated with both cities. In normal weather condition, Mn, Cu and Si concentrations are statistically significant in Asan, while Mn, Fe, Cu and Si concentrations are statistically significant in Seoul. Mn, Fe and Si concentrations in both cities were statistically significant during yellow-sand weather.