• Title/Summary/Keyword: $PM_{2.5}$

Search Result 17,574, Processing Time 0.048 seconds

Postoperative Echocardiographic Hemodynamic Comparison between Recently Available Bileaflet Mechanical Valves (수종의 기계판막치환후 초음파심음향도를 이용한 판막간의 혈류역학적 비교)

  • Kang Joon Kyu;Hong Joon Hwa;Kim Hyung Tai;Park In Duk;Lee Cheol Joo
    • Journal of Chest Surgery
    • /
    • v.38 no.7 s.252
    • /
    • pp.496-500
    • /
    • 2005
  • There was no difference between the bileaflet mechanical valves on the midterm and longterm clinical outcome. We reviewed the hemodynamic comparison between recently available mechanical valves by Doppler Echocardiography. Material and Method: We retrospectively reviewed 396 postoperative hemodynamic datas (EOA, MDPG, and MSPG) by doppler echocardiography in 345 patients. Mechanical valves from 5 venders (Sorin Bicarbon, SJM, ATS, On-X, and Edward MIRA) were compared. There were 232 valves in mitral position, 162 in aortic, and 2 in tricuspid. Result: There were 178 men (mean age; $50.6\pm13.9$ years old) and 167 women $(52.6\pm,4.6)$. MDPG/EOA of 27 mm in mitral position was Sorin; $4.2\pm1.5 mmHg/3.0\pm0.9cm^2,\;SJM;\;2.3\pm1.2/3.5\pm0.6$. In 29mm, Sorin, SJM, ATS, On-X, MIRA revealed $3.4\pm1.2/3.1\pm0.6,\;3.3\pm1.1/2.7\pm0.4,\;3.8\pm0.8/3.2\pm0.6,\;4.0\pm3.0/3.1\pm0.9,\;2.9\pm0.9/3.0\pm0.8$ In 31mm, Sorin, SJM, ATS, MIRA revealed $3.9\pm1.9/2.9\pm0.6,\;3.5\pm1.2/3.0\pm0.6,\;3.4\pm0.8/2.8\pm0.2,\;3.7\pm1.5/2.7\pm0.7$. In 33mm, Sorin, SJM, MIRA revealed $4.4\pm0.9/2.5\pm0.4,\;3.4\pm1.5/3.3\pm0.5,\;4.7\pm2.4\3.0\pm0.3$. MSPG/EOA of 19mm aortic position was Sorin, SJM, ATS, On-X, MIRA $18.0 mmHg/1.2cm^2,\;25.6\pm8.7/1.1\pm0.3,\;25.9\pm12.6/1.2\pm0.3,\;23.0/1.3,\;27.9\pm7.1/1.2\pm0.1$ in that order. In 21mm, SJM, ATS, On-X, MIRA revealed $18.3\pm6.7/1.5\pm0.5,\;13.7\pm2.1/1.7\pm0.3,\;17.0/1.4,\;17.1\pm5.5/1.8\pm0.5$. In 23mm Sorin, SJM, ATS, On-X, MIRA revealed $14.0\pm4.6/1.7\pm0.6,\;12.8\pm3.2/2.0\pm0.2,\;16.8\pm12.2/2.1\pm0.9,\;14.0/1.5,\;15.0\pm5.5/1,8\pm0.5$. In 25mm, SJM and MIRA revealed $14.0\pm5.1/1.8\pm1.0,\;11.0/2.3$. There was no statistically significant difference in these values between the venders given the same position and size. 2 redo valve replacements were performed, 1 due to severe hemolysis in ATS and 1 due to leaflet immobilization in SJM. Conclusion: Postoperative hemodynamic comparison by doppler echocardiography shows no statistically significant difference between recently available mechanical valves in this country.

Estimation of the Probability of Exceeding PM2.5 Standards in Busan (부산지역에서의 PM2.5 기준치 미달성확률 추정)

  • Chang, Jae-Soo;Cheong, Jang Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.697-705
    • /
    • 2012
  • Particulate matter (PM) data collected from the Urban Air Monitoring Network in Busan during the period from 2006 through 2010 were statistically examined and analyzed to estimate the probability of exceeding $PM_{2.5}$ 24 hour and annual standard to be implemented from January $1^{st}$, 2015. For Jangrimdong, Yeonsandong, Kijangeup, and Jwadong where simultaneous measurement of $PM_{10}$ and $PM_{2.5}$ was conducted, the probability of exceeding $PM_{2.5}$ standards was estimated using $PM_{2.5}$ data measured on site. For other areas where there were no measured $PM_{2.5}$ data available, the probability of exceeding $PM_{2.5}$ standards was statistically estimated using $PM_{10}$ measured on site and $PM_{2.5}/PM_{10}$ ratios obtained from the four stations where both $PM_{2.5}$ and $PM_{10}$ were monitored simultaneously. At Jangrimdong, Yeonsandong, Kijangeup, and Jwadong, mean value of annual 99 percentile of 24 hr average $PM_{2.5}$ for 5 years from 2006 through 2010 was 99.3, 74.5. 57.0, and $62.5{\mu}g/m^3$, respectively, and the probability of exceeding $PM_{2.5}$ 24 hr standard was estimated at 100%. For areas where there were no measured $PM_{2.5}$ data available, the estimated probability of exceeding $PM_{2.5}$ 24 hr standard was more than 0.82. Mean value of annual average $PM_{2.5}$ from 2008 through 2010 was 31.7 and $27.6{\mu}g/m^3$ for Jangrimdong and Yeonsandong, respectively, which exceeded $PM_{2.5}$ annual standard of $25{\mu}g/m^3$. Mean value of annual average $PM_{2.5}$ during the same period for Kijangeup and Jwadong was 19.2 and $20.7{\mu}g/m^3$, respectively, which satisfied $PM_{2.5}$ annual standard. For other areas where there were no measured $PM_{2.5}$ data available, the probability of exceeding $PM_{2.5}$ annual standard was more than 0.95 except Taejongdae and Kwangahndong. With $PM_{10}$ and $PM_{2.5}$ data measured at 17 Urban Air Monitoring Stations in Busan, the probability of exceeding $PM_{2.5}$ standards was estimated to be very high for almost all areas. This result indicates that proper measures to mitigate $PM_{2.5}$ in Busan should be investigated and established as soon as possible.

Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004 (익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.

Impact of Yellow Dust Transport from Gobi Desert on Fractional Ratio and Correlations of Temporal PM10, PM2.5, PM1 at Gangneung City in Fall (고비사막으로부터 황사수송이 가을에 강릉시의 시간별 PM10, PM2.5, PM1 간의 농도차비와 상관관계에 미치는 영향)

  • Lee, Mi-Sook;Chung, Jin-Do
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • Hourly concentrations of $PM_1$, $PM_{2.5}$ and $PM_{10}$, were investigated at Gangneung city in the Korean east coast on 0000LST October 26~1800LST October 29, 2003. Before the intrusion of Yellow dust from Gobi Desert, $PM_{10}$($PM_{2.5}$, $PM_1$) concentration was generally low, more or less than 20 (10, 5) ${\mu}g/m^3$, and higher PM concentration was found at 0900LST at the beginning time of office hour and their maximum ones at 1700LST around its ending time. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$($PM_{2.5}$ and $PM_1$, and $PM_{10}$ and $PM_1$) was very high with 0.90(0.99, 0.84), and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.37~3.39(0.23~0.54), respectively. It implied that local $PM_{10}$ concentration could be greatly affected by particulate matters of sizes larger than $2.5{\mu}m$, and $PM_{2.5}$ concentration could be by particulate matters of sizes smaller than $2.5{\mu}m$. During the dust intrusion, maximum concentration of $PM_{10}$($PM_{2.5}$, $PM_1$) reached 154.57(93.19, 76.05) ${\mu}g/m^3$ with 3.8(3.4, 14.1) times higher concentration than before the dust intrusion. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$(vice verse, $PM_{2.5}$, $PM_1$) was almost perfect high with 0.98(1.00, 0.97) and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 0.48~1.25(0.16~0.37), local $PM_{10}$ concentration could be major affected by particulates smaller than both $2.5{\mu}m$ and $1{\mu}m$ (fine particulate), opposite to ones before the dust intrusion. After the ending of dust intrusion, as its coefficient of 0.23(0.81, - 0.36) was very low, except the case of $PM_{2.5}$ and $PM_1$ and $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.13~1.91(0.29~1.90), concentrations of coarse particulates larger than $2.5{\mu}m$ greatly contributed to $PM_{10}$ concentration, again. For a whole period, as the correlation coefficients of $PM_{10}$, $PM_{2.5}$, $PM_1$ were very high with 0.94, 1.00 and 0.92, reliable regression equations among PM concentrations were suggested.

Characteristics of Metallic and Ionic Concentrations in PM10 and PM2.5 in Busan (부산지역 PM10과 PM2.5 중의 금속 농도와 이온농도 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.819-827
    • /
    • 2014
  • This study analyzes the chemical composition of metallic elements and water-soluble ions in $PM_{10}$ and $PM_{2.5}$. $PM_{10}$ and $PM_{2.5}$ concentrations in Busan during 2010-2012 were $97.2{\pm}67.5$ and $67.5{\pm}32.8{\mu}g/m^3$, respectively, and the mean $PM_{2.5}/PM_{10}$ concentration ratio was 0.73. The contribution rate of water-soluble ions to $PM_{10}$ ranged from 29.0% to 58.6%(a mean of 38.6%) and that to $PM_{2.5}$ ranged from 33.9% to 58.4%(a mean of 43.1%). The contribution rate of sea salt to $PM_{10}$ was 13.9% for 2011 and 9.7% for 2012, while that to $PM_{2.5}$ was 17.4% for 2011 and 10.1% for 2012. $PM_{10}$ concentration during Asian dust events was $334.3{\mu}g/m^3$ and $113.3{\mu}g/m^3$ during non-Asian dust events, and the $PM_{10}$ concentration ratio of Asian Dust/Non Asian dust was 2.95. On the other hand, the $PM_{2.5}$ concentration in Asian dust was $157.4{\mu}g/m^3$ and $83.2{\mu}g/m^3$ in Non Asian dust, and the $PM_{2.5}$ concentration ratio of Asian Dust/Non Asian dust was 1.89, which was lower than that of $PM_{10}$.

Characterization of Annual PM2.5 and PM10 Concentrations by Real-time Measurements in Cheonan, Chungnam (실시간 측정을 통한 천안시 대기 중 연간 PM2.5, PM10 농도 특성 조사)

  • Heo, Jung-Hyuk;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.445-450
    • /
    • 2012
  • From 2015, PM2.5 standards will be added to Korean national ambient air quality standards. To characterize PM2.5 levels in Cheonan, annual PM2.5 concentrations along with PM10 concentrations were investigated between February 2010 and January 2011 using a dust monitor. The annual PM2.5 concentration was $40.45{\mu}g/m^3$ and over the standards($25{\mu}g/m^3$). The daily average PM2.5 concentrations ranged from 2.43 to $178.84{\mu}g/m^3$, and 26% days exceeded the daily PM2.5 standard($50{\mu}g/m^3$). During the same periods, only 11% days exceeded the daily PM10 standard, showing that PM2.5 were more concerning levels than PM10. Seasonal variations showed the highest concentrations in spring and winter, and lowest concentration in summer due to heavy rain fall. Changes in PM2.5 concentrations during the day were remarkable and showed the highest concentrations in commuting periods. The results indicated that the concentrations of PM2.5 in Cheonan were at the concerning level, and mainly from the mobile sources.

Performance Characteristics of PM10 and PM2.5 Samplers with an Advanced Chamber System (챔버 기술 개발을 통한 PM10과 PM2.5 시료채취기의 수행 특성)

  • Kim, Do-Hyeon;Kim, Seon-Hong;Kim, Ji-Hoon;Cho, Seung-Yeon;Park, Ju-Myon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.739-746
    • /
    • 2010
  • The purposes of this study are 1) to develop an advanced chamber system within ${\pm}10%$ of air velocity at the particulate matter (PM) collection area, 2) to research theoretical characteristics of PM10 and PM2.5 samplers, 3) to assess the performance characteristics of PM10 and PM2.5 samplers through chamber experiments. The total six one-hour experiments were conducted using the cornstarch with an mass median aerodynamic diameter (MMAD) of $20\;{\mu}m$ and an geometric standard deviation of 2.0 at the two different air velocity conditions of 0.67 m/s and 2.15 m/s in the chamber. The aerosol samplers used in the present study are one APM PM10 and one PM2.5 samplers accordance with the US federal reference methods and specially designed three mini-volume aerosol samplers (two for PM10 and one for PM2.5). The overall results indicate that PM10 and PM2.5 mini-volume samplers need correction factors of 0.25 and 0.39 respectively when APM PM samplers considered as reference samplers and there is significant difference between two mini-volume aerosol samplers when a two-way analysis of variance is tested using the measured PM10 mass concentrations. The PM10 and PM2.5 samplers with the cutpoints and slopes (PM10: $10{\pm}0.5\;{\mu}m$ and $1.5{\pm}0.1$, PM2.5: $2.5{\pm}0.2\;{\mu}m$ and $1.3{\pm}0.03$) theoretically collect the ranges of 86~114% and 64~152% considering the cornstarch characteristics used in this research. Furthermore, the calculated mass concentrations of PM samplers are higher than the ideal mass concentrations when the airborne MMADs for the cornstarch used are smaller than the cutpoints of PM samplers and the PM samplers collected less PM in another case. The chamber experiment also showed that PM10 and PM2.5 samplers had the bigger collection ranges of 37~158% and 55~149% than the theocratical calculated mass concentration ranges and the relatively similar mass concentration ranges were measured at the air velocity of 2.15 m/s comparing with the 0.67 m/s.

The Study of PM10, PM2.5 Mass Extinction Efficiency Characteristics Using LIDAR Data (라이다 데이터를 이용한 PM10, PM2.5 질량소산효율 특성 연구)

  • Kim, TaeGyeong;Joo, Sohee;Kim, Gahyeong;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1793-1801
    • /
    • 2021
  • From 2015 to June 2020, the backscattering coefficients of 532 and 1064 nm measured using LIDAR and the depolarization ratio at 532 nm were used to separate the backscattering coefficient at 532 nm as three types as PM10, PM2.5-10, PM2.5 according to particle size. The mass extinction efficiency (MEE) of three types was calculated using the mass concentration measured on the ground. The overall mean values of the calculated MEE were 5.1 ± 2.5, 1.7 ± 3.7, and 9.3 ± 6.3 m2/g in PM10, PM2.5-10, and PM2.5, respectively. When the mass concentration of PM10 and PM2.5 was low, higher than average MEE was calculated, and it was confirmed that the MEE decreased as the mass concentration increased. When the MEE was calculated for each type according to the mixing degree of Asian dust, PM2.5-10 was twice at pollution aerosol as high as 2.1 ± 2.8 m2/g, compare to pollution-dominated mixture, dust-dominated mixture, and pure dust of 1.1 ± 1.8, 1.4 ± 3.3, 1.1 ± 1.5 m2/g, respectively. However, PM2.5 MEE showed similar values irrespective of type: 9.4 ± 6.5, 9.0 ± 5.8, 10.3 ± 7.5, and 9.1 ± 9.0 m2/g. The MEE of PM10 was 5.6 ± 2.9, 4.4 ± 2.0, 3.6 ± 2.9, and 2.8 ± 2.4 m2/g in pollution aerosol (PA), pollution-dominated mixture (PDM), dust-dominated mixture (DDM), and pure dust (PD), respectively, and increased as the dust ratio value decreased. Even if the same type according to the same mass concentration or Asian dust mixture was shown, as the PM2.5/PM10 ratio decreased, the MEE of PM2.5-10 decreased and the MEE of PM2.5 showed a tendency to increase.

An Effectiveness of Simultaneous Measurement of PM10, PM2.5, and PM1.0 Concentrations in Asian Dust and Haze Monitoring

  • Cho, Changbum;Park, Gilun;Kim, Baekjo
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.651-666
    • /
    • 2013
  • This study introduces a novel approach to the differentiation of two phenomena, Asian Dust and haze, which are extremely difficult to distinguish based solely on comparisons of PM10 concentration, through use of the Optical Particle Counter (OPC), which simultaneously generates PM10, PM2.5 and PM1.0 concentration. In the case of Asian Dust, PM10 concentration rose to the exclusion of PM2.5 and PM1.0 concentration. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were below 40%, which is consistent with the conclusion that Asian Dust, as a prime example of the coarse-particle phenomenon, only impacts PM10 concentration, not PM2.5 and PM1.0 concentration. In contrast, PM10, PM2.5 and PM1.0 concentration simultaneously increased with haze. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were generally above 70%. In this case, PM1.0 concentration varies because a haze event consists of secondary aerosol in the fine-mode, and the relative ratios of PM10 and PM2.5 concentration remain intact as these values already subsume PM1.0 concentration. The sequential shift of the peaks in PM10, PM2.5 and PM1.0 concentrations also serve to individually track the transport of coarse-mode versus fine-mode aerosols. The distinction in the relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration in an Asian Dust versus a haze event, when collected on a national or global scale using OPC monitoring networks, provides realistic information on outbreaks and transport of Asian Dust and haze.

Comparison of PM1, PM2.5, PM10 Concentrations in a Mountainous Coastal City, Gangneung Before and After the Yellow Dust Event in Spring (봄철 황사 전후 산악연안도시, 강릉시에서 PM1, PM2.5, PM10의 농도비교)

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.633-645
    • /
    • 2008
  • In order to investigate the variations and corelation among $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations, the hourly concentrations of each particle sizes of 300nm to $20{\mu}m$ at a city, Gangneung in the eastern mountainous coast of Korean peninsula have been measured by GRIMM aerosol sampler-1107 from March 7 to 17, 2004. Before the influence of the Yellow Dust event from China toward the city, $PM_{10},\;PM_{2.5}\;and\;PM_1$, concentrations near the ground of the city were very low less than $35.97{\mu}g/m^3,\;22.33{\mu}g/m^3\;and\;16.77{\mu}g/m^3$, with little variations. Under the partial influence of the dust transport from the China on March 9, they increased to $87.08{\mu}g/m^3,\;56.55{\mu}g/m^3\;and\;51.62{\mu}g/m^3$. $PM_{10}$ concentration was 1.5 times higher than $PM_{2.5}$ and 1.85 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 1.49 with an averaged 0.5 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 0.4 with an averaged 0.25. $PM_{10}\;and\;PM_{2.5}$ concentrations were largely influenced by particles smaller than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. During the dust event from the afternoon of March 10 until 1200 LST, March 14, $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations reached $343.53{\mu}g/m^3,\;105{\mu}g/m^3\;and\;60{\mu}g/m^3$, indicating the $PM_{10}$ concentration being 3.3 times higher than $PM_{2.5}$ and 5.97 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 7.82 with an averaged 3.5 and one of $(PM_{2.5}-PM_1)/PM_1$, had a maximum value of 2.8 with an averaged 1.5, showing $PM_{10}\;and\;PM_{2.5}$ concentrations largely influenced by particles greater than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. After the dust event, the most of PM concentrations became below $100{\mu}g/m^3$, except of 0900LST, March 15, showing the gradual decrease of their concentrations. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 3.75 with an averaged 1.6 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 1.5 with an averaged 0.8, showing the $PM_{10}$ concentration largely influenced by corse particles than $2.5{\mu}m$ and the $PM_{2.5}$ by fine particles smaller than $1{\mu}m$, respectively. Before the dust event, correlation coefficients between $PM_{10},\;PM_{2.5}\;and\;PM_1$, were 0.89, 0.99 and 0.82, respectively, and during the dust event, the coefficients were 0.71, 0.94 and 0.44. After the dust event, the coefficients were 0.90, 0.99 and 0.85. For whole period, the coefficients were 0.54, 0.95 and 0.28, respectively.