• Title/Summary/Keyword: $PM_{10}$ in Korea

Search Result 6,502, Processing Time 0.059 seconds

Analysis of Infiltration of Outdoor Particulate Matter into Apartment Buildings (외기 중 미세먼지의 공동주택 실내 유입에 관한 연구)

  • Bang, Jong-Il;Jo, Seong-Min;Sung, Min-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • Recently, concentration of fine and ultra-fine particulate matter(PM) has been increased in KOREA. The increase of PM in KOREA is due to increase of domestic industries and yellow dust from china. PM is known to cause diseases such as dyspnoea, asthma, arrhythmia. Since PM is harmful to human, KOREA Ministry of Environment(ME) warns people to stay indoors when the outdoor PM concentration is high. However, prior studies has shown that indoor PM concentration can be relatively high when outdoor PM concentration is high due to infiltration of PM into buildings though leakage areas. In this study, airtightness, indoor and outdoor pressure difference and PM 2.5 & 10 concentration were measured in an apartment complex to observe PM infiltrating into building. Field measurement was conducted in newly-built apartment buildings to avoid the influence of indoor PM which can be generated by residents. The airtightness test was conducted to identify the leakage areas of the apartment, such as electric outlets and supply/exhaust diffusers. The airtightness test result showed that the air leakage area of the building was dominant in buildings envelop. According to indoor and outdoor pressure difference measurement result and PM concentration measurement result, it can be concluded that outdoor PM can infiltrate into indoor by leakage areas when wind is blown toward the apartment. As a result, pressure difference formed by the external weather condition and architectural characteristics such as the airtightness in building can influence PM to infiltrate into buildings. In further studies, I/O ratio, stack-effect, infiltration and penetration factor will be considered.

Variations in the Monthly PM2.5 Concentrations and their Characteristics around the Busan Seaport Area (부산 항만 주변지역 PM2.5 농도의 월 변화 및 특성)

  • Kang, Nayeon;An, Joon Geon;Lee, Seon-Eun;Hyun, Sangmin
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.845-861
    • /
    • 2021
  • This study investigated the variations in monthly PM2.5 concentrations and their characteristics at the sampling site (35.075°N, 129.080°E) around the Busan seaport area for six months (from August 2020 to January 2021). Monthly PM2.5 concentrations in the filtered samples ranged from 8.4 to 42.3 ㎍/m3 (average=19.6±8.2 ㎍/m3, n=50) and were generally high in August, December, and January, and low in September, October, and November. The variations of monthly PM2.5 concentrations showed similar patterns to those of the neighboring national air quality monitoring sites. The contents of Total Carbon (TC), Organic Carbon (OC), Elemental Carbon (EC), and OC/EC ratios in PM2.5 showed large variability during the study period. The OC/EC ratios ranged from 4.2 to 34.4, suggesting that the relative contributions of OC and EC to the PM2.5 concentrations changed temporally and might be related to their formation sources. Variations in the chemical components of and particle size distributions in PM2.5 showed that high PM2.5 concentrations were affected by various sources, such as sea salt and ship emission. The precursor gas concentrations were discussed in terms of monthly variations and their contributions to PM2.5 concentrations. However, further research is needed to understand the characteristics and behaviors of PM2.5 concentrations around the Busan seaport area.

The Removal Effect of Fine Particles Applied Platform Screen Door in Seoul Subway Station (지하철 역사 승강장의 PSD 설치에 의한 미세먼지 감소 효과)

  • Sohn, Jong-Ryeul;Jung, Young-Rim;Park, Hyun-Hee;Oh, Youn-Hee;Choi, Won;Kim, Soon-Geun
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.60-68
    • /
    • 2009
  • The most principal approach to improve indoor air quality(IAQ) of subway was to examine the fine particulate(PM-10) from the emission sources. Therefore, this study was carried on the investigation the fine particulate for comparison with the removal efficiency of PM-10 in divided the PSD(Platform Screen Door) and Non-PSD subway station from July, 2007 to May 2008. In the monitoring results, the range of PM-10 concentration of Non-PSD station was $44.6{\sim}116.5{\mu}g/m^3$ and the range of PM-10 concentration of PSD station was $23.9{\sim}81.1{\mu}g/m^3$. And then the range of PM-2.5 concentration of Non-PSD station was $17.4-56.6{\mu}g/m^3$, and then the range of PM-2.5 concentration of PSD station was $17.9{\sim}34.4{\mu}g/m^3$. In comparison with the results of the PSD and Non-PSD subway station, we found that the PM-10 removal efficiency of PSD was 30-40%. In conclusion, the PSD will be applied the effective facilities of decreasing PM-10 in subway station in Korea.

Functional Activity of Water and Ethanol Extracts from Red Pepper (Capsicum annuum L.) Seeds (고추씨의 물과 에탄올 추출물의 생리활성)

  • Ku, Kyung-Hyung;Choi, Eun-Jeong;Park, Wan-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1357-1362
    • /
    • 2008
  • This study was carried out to investigate the extract yield, total polyphenolic compounds content, electron donating activity (EDA) and nitrite scavenging activity (NSA) of various red pepper (Capsicum annuum L.) seeds. The water and ethanol extracts showed yields in the ranges of $11.30{\sim}18.93%$ and $3.00{\sim}5.25%$, respectively. Ethanol extract yield was higher than water. In the total polyphenol content, water and ethanol extracts were in the range of $10.22{\pm}1.29{\sim}25.98{\pm}0.55mg/$ and $8.00{\pm}0.57{\sim}33.99{\pm}0.09mg/g$, respectively. Also, nitrite scavenging activities were $70.11{\pm}0.71{\sim}94.07{\pm}0.86%$ and $81.93{\pm}1.77{\sim}99.90{\pm}0.70%$ for water and ethanol extracts, respectively. In the electron donating activity, water extracts showed lower activity than ethanol extracts. The electron donating activity of water extracts was in the range of $0.04{\pm}0.07{\sim}14.31{\pm}0.06%$ while that of NSA of ethanol extracts was $35.48{\pm}0.23{\sim}73.83{\pm}0.04%$.

Concentration Characteristics of Atmospheric PM2.5, PM10 and TSP during the Asian Dust Storm in Iksan Area (익산지역에서 황사발생시 PM2.5, PM10 TSP의 농도 특성)

  • Kang, Gong-Unn;Kim, Nam-Song;Kim, Kyung-Suk;Kim, Mi-Kyung;Lee, Hyun-Ju
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.408-421
    • /
    • 2007
  • The concentration characteristics of atmospheric particle matters (PM) including $PM_{2.5},\;PM_{10}$, and TSP were evaluated through the measurement data of PM_{2.5}$ (fine particulate), PM_{10-2.5}$ (coarse particulate), and PM_{over-10}$ collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in spring of 2006 in Iksan area. During the sampling period of 10-15 March and 24 days from 8 April to 2 May, 32 samples for PM of each size fractions were collected, and then measured for PM mass concentrations and water-soluble inorganic ion species. Average concentrations of $PM_{2.5},\;PM_{10}$, TSP were $57.9{\pm}44.1mg/m^3$, $96.6{\pm}89.1mg/m^3$, and $114.8{\pm}99.7mg/m^3$, respectively. Water-soluble inorganic ion fractions to PM mass were found to be 36.5%, 18.0%, and 11.1% for $PM_{2.5}$, $PM_{10-2.5}$ and $PM_{over-10}$, respectively. By showing the high concentrations of PM samples during Asian dust events, those three fractions of PM were distinguished between the samples of Asian dust event and the samples of no event. However, the increase of PM concentrations observed during Asian dust events showed a different pattern for some Asian dust events. The differences of those three fractions in the size distribution may depend on differences on place of occurrence of Asian dust storm and course of transport from China continent to Iksan area in Korea. However, the extent of PM mass contribution during Asian dust events was generally dominated by the coarse particles rather than the fine fraction of PM. The variations of water-soluble inorganic ion species concentration in those three PM fractions between the samples of Asian dust event and the samples of no event were also discussed in this study.

Mass Concentration and Ion Composition of Size-segregated Particulate Matter during the Non-Asian Dust Storm of Spring 2007 in Iksan (익산지역에서 봄철 비황사기간 중 입경별 대기먼지농도와 이온조성)

  • Kang, Gong-Unn;Kim, Nam-Song;Lee, Hyun-Ju
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.300-310
    • /
    • 2008
  • In order to further determine the mass concentration and ion composition of size-segregated particulate matter (PM) during the non-Asian dust storm of spring, $PM_{2.5}$ (fine particle), $PM_{10-2.5}$ (coarse particle), and $PM_{over-10}$ (PM with an aerodynamic diameter larger than $10{\mu}m$) were collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in the spring season of 2007 in the Iksan area. During the sampling period from 5 April to 21 April, a total of 34 samples for size-segregated PM were collected, and then measured for PM mass concentrations by gravimetric measurements and for water-soluble inorganic ion species by using ion chromatography. Average mass concentrations of $PM_{2.5}$, $PM_{10-2.5}$, $PM_{over-10}$ were $35.4{\pm}11.5{\mu}g/m^3$, $13.3{\pm}5.5{\mu}g/m^3$ and $9.5{\pm}4.7{\mu}g/m^3$, respectively. On average, $PM_{2.5}$ accounted for 74% of $PM_{10}$. Compared with the literature from other areas in Korea, the measured concentration of $PM_{2.5}$ were relatively high. Water-soluble inorganic ion fractions in $PM_{2.5}$, $PM_{10-2.5}$, and $PM_{over-10}$ were found to be 47.8%, 28.5%, and 14.7%, respectively. Among the water-soluble inorganic ion species, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the main components in $PM_{2.5}$, while $NO_3^-$ dominantly existed in both $PM_{10-2.5}$ and $PM_{over-10}$. Non-seasalt $SO_4^{2-}$ (nss-$SO_4^{2-}$ and $NO_3^-$ were found to mainly exist as the neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ in fine particles.

Concentrations of Atmospheric Fine Particles Measured during 2005 in Chungnam, Korea (충남지역 대기 중 미세입자 오염 현황)

  • Oh, Se-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.132-140
    • /
    • 2007
  • Concentrations of atmospheric fine particles in Chungnam were measured at 7 sampling sites during 2005. The daily average concentrations of PM 10, PM2.5, and PM1 ranged from 14.9 to $136.5{\mu}g/m^3$, 8.2 to $113.2{\mu}g/m^3$, and 5.7 to $107.5{\mu}g/m^3$, respectively, and the highest levels were observed at Yeongi site. The lowest concentrations for the all size fractions of particulate were observed at Taean located at the west end of the peninsula. The daily average PM10 concentrations were below the current National Standard at all sites, while the daily average PM2.5 concentrations frequently exceeded the US Standard at Cheonan, Dangjin, Boryeong, and Yeongi sites. The frequencies of PM2.5 concentrations exceeding the US standard at Cheonan, Dangjin, Boryeong, and Yeongi were 10.8%, 6.7%, 6.7%, and 26.7%, respectively. In addition, $68{\sim}80%$ of PM10 was in the PM2.5 fraction indicating that fine particles were the major component of atmospheric particles in Chungnam.

Comparing statistical data on 119 ambulance runs and ambulance crew in Korea and Japan (한국과 일본의 소방 구급 출동 및 구급인력 규모 비교 연구)

  • Baek, Hong-Seok
    • The Korean Journal of Emergency Medical Services
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2019
  • Purpose: This study aimed to compare and analyze statistical data on 119 ambulance runs and ambulance crew, which are the components of the emergency medical services system in Korea and Japan. Methods: Data from National Fire Agencies of both Korea and Japan were collected and statistically compared. Results: With regard to the ratio of 119 ambulance runs, Korea's ratio has been gradually and continuously growing beyond that of Japan (Korea 4708.11, Japan 4706.47) since 2014. The ratio of firefighting ambulances in Korea was 2.59 ($2.59{\pm}0.10$), and was 4.76 ($4.76{\pm}0.12$) in Japan. The ratio of 119 ambulance crews in Korea was 15.55 ($15.55{\pm}2.03$), and was 47.24 ($47.24{\pm}1.06$) in Japan. Among the ambulance crews, the ratio of paramedics was 33.81 ($33.81{\pm}5.85$) in Korea and was 38.86($38.86{\pm}4.10$) in Japan. Conclusion: The ratio of 119 ambulance runs in Korea has already exceeded that of Japan, but the numbers of 119 ambulance crews and paramedics qualified for special emergency treatment are still insufficient. Therefore, supply and demand policy that promotes the development of the firefighting ambulance service system is necessary.

Comparison of the Particulate Matter Removal Capacity of 11 Herbaceous Landscape Plants

  • Kwon, Kei-Jung;Odsuren, Uuriintuya;Kim, Sang-Yong;Yang, Jong-Cheol;Park, Bong-Ju
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.3
    • /
    • pp.267-275
    • /
    • 2021
  • Background and objective: Particulate matter (PM) has a fatal effect on health. There have been many studies on the use of plants such as trees and shrubs as eco-friendly and sustainable biofilter for the removal of PM. In forming more green space, ground cover plants play an important role in multi-layered planting. This study was conducted to investigate the ability of plants to reduce PM, targeting Korean native ground cover plants with high availability in urban green spaces. Methods: For 4 species of Asteraceae, 4 species of Liliaceae, and 3 species of Rosaceae, one species of plants at a time were placed in an acrylic chamber (800 × 800 × 1000 mm, L × W × H) modeling an indoor space. After the injection of PM, the amount of PM remaining in the chamber over time was investigated. Results: For all three types of PM (PM10, PM2.5, PM1), significant difference occurred in the amount of PM remaining between plant species after 1 hour in the Liliaceae chamber, 3 hours in the Asteraceae chamber, and 5 hours in the Rosaceae chamber. With Liliaceae, the leaf area and the amount of PM remaining in the chamber showed a negative (-) correlation. With the Asteraceae and Rosaceae, there was a weak negative correlation between the leaf area and the amount of PM remaining in the chamber. Conclusion: When using ground cover plants as a biofilter to remove PM, it is considered effective to select a species with a large total leaf area, especially for Liliaceae.