• Title/Summary/Keyword: $PM_{10}$ and $PM_{2.5}$ concentrations

Search Result 1,377, Processing Time 0.032 seconds

Development and Performance Evaluation of a Real-time PM Monitor based on Optical Scattering Method (광산란방식을 이용한 미세먼지 실시간 모니터링 장치 개발 및 성능평가)

  • Kang, Doo Soo;Oh, Jung Eun;Lee, Sang Yul;Shin, Hee Joon;Bong, Ha Kyung;Kim, Dae Seong
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.107-119
    • /
    • 2018
  • In this study, we have developed a real-time monitoring device for measuring PM10 and PM2.5 of ambient aerosol particles. The real-time PM monitor (SENTRY Dust Monitor) uses the optical scattering method and has 16 channels in particle size. The laboratory and field tests were carried out to evaluate the developed SENTRY Dust Monitor. Arizona Test Dust particles were used as test particles in the laboratory test and the field test was carried out at the Jongno-gu Observatory in Seoul. The measurements of PM10 and PM2.5 concentrations obtained by SENTTRY Dust Monitor were compared with Grimm Dust Monitor (Model 1.108) and a beta ray gauge. It was shown that the PM10 and PM2.5 concentrations obtained by SENTRY Dust Monitor agree well with that of the reference devices. Based on the results obtained in this study, it could be concluded that the SENTRY Dust Monitor can be used as a PM monitoring device for real-time monitoring of the ambient aerosols.

Comparison of PM2.5 Concentrations before and after Smoke-free Policy in Some Indoor Sports Facilities in Seoul (겨울철 서울시 일부 실내스포츠시설에서 금연정책 실시 전후 PM2.5 농도 비교)

  • Kim, Yoonjee;Lee, Kiyoung;Kim, Seung Won
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.267-274
    • /
    • 2018
  • Objectives: This study examined the impact of a smoke-free policy on indoor air quality at indoor recreation facilities by assessing $PM_{2.5}$ concentrations before and after the implementation of the new policy. Methods: Using real-time monitors, $PM_{2.5}$ concentrations were measured in 50 billiard rooms and 50 golf simulator rooms in Seoul, Korea. The characteristics of the indoor recreation facilities, smoking status, and atmospheric conditions were recorded at the same time.After the enforcement of a smoke-free policy, $PM_{2.5}$ concentrations, installation of smoking room, and smoking status were examined when the facilities were revisited. Results: Almost a half of the billiard rooms and over 80% of golf simulator rooms were located underground. Seventy percent of the billiard rooms and one hundred percent of the golf simulator rooms were equipped with a local exhaust ventilation system. After the implementation of the smoke-free policy, 46% of the billiard rooms and 20% of the golf simulator rooms newly installed a smoking room. In the billiard rooms with a newly-installed smoking room, the $PM_{2.5}$ concentrations decreased from 97.9 to $45.6{\mu}g/m^3$ after the implementation of the smoke-free policy. The same change of 29.0 to $ 26.3{\mu}g/m^3$ was not statistically significant in golf simulator rooms. Indoor $PM_{2.5}$ concentrations were correlated with outdoor $PM_{2.5}$ concentrations, number of smokers, and number of people in the room. Conclusions: The smoke-free policy for indoor recreation facilities was not effective at making the indoor spaces free from second hand smoke. Although a few billiard rooms installed a smoking room, indoor $PM_{2.5}$ concentrations were still higher than those of outdoor $PM_{2.5}$ or atmospheric $PM_{2.5}$. Stricter enforcement of the smoke-free policy should be achieved to prevent secondhand smoke exposure.

Elemental Composition and Source Identification of PM2.5 in Jeju City (제주시 미세먼지(PM2.5)에 함유된 원소의 조성특성 및 오염원)

  • Lee, Ki-Ho;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.543-554
    • /
    • 2018
  • From November 2013 to December 2016, ambient fine particulate matter ($PM_{2.5}$) was sampled in the downtown area of Jeju City, South Korea, which has seen rapid urbanization. The atmospheric concentrations of elements were measured in the $PM_{2.5}$ samples. This study focused on Cd, Cr, Cu, Mn, Ni, Pb, As, Sb, Sn, V, and Zn. The concentrations of Al, Na, K, Fe, Ca, Mg, Sr, and La were also obtained for reference. The objectives of this study were to examine the contributions of these elements to $PM_{2.5}$ concentrations in downtown Jeju City, and to investigate the inter-element relationships and the elemental sources by using enrichment factors and principal components analysis (PCA). A composition analysis showed that the 19 elements constituted 6.65 % of the $PM_{2.5}$ mass, and Na, K, Al, Fe, Ca, Mg, and Zn constituted 98 % of the total ion mass. Seasonal trend analysis for the sampling period indicated that the concentrations of the elements increased from November to April. However, no substantial seasonal variations were found in the concentrations of the elements. The composition ratios of some elements (Cu/Zn, Cu/Cd, Cu/Pb, V/Ni, and V/La) were found to be out of range when compared to the literature from other urban areas. The ratios between the elements and the PCA results showed that local contaminant sources in Jeju City rarely influence the composition of $PM_{2.5}$. This suggests that the major sources of $PM_{2.5}$ in Jeju City may include long-range transport of fine particulate matter produced in other areas.

Forecasting daily PM10 concentrations in Seoul using various data mining techniques

  • Choi, Ji-Eun;Lee, Hyesun;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.199-215
    • /
    • 2018
  • Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.

Investigation of Measurement Feasibility of Particulate Matter Concentration by Different Land-Use Types Using Drone (드론을 이용한 토지이용별 미세먼지 농도 측정 가능성 모색 연구)

  • Son, Seung-Woo;Yu, Jae-Jin;Kim, Dong-Woo;Kim, Tae-Hyun;Sung, Woong-Gi;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.259-267
    • /
    • 2020
  • This study measured the Particulate Matter (PM) concentration according to altitude (30 m, 60 m, 90 m, 120 m, and 150 m) in three different environments: a construction site, natural environment (arboretum), and residential area. PM2.5 and PM10 values at 30 m above the construction site were 18.63 ㎍/㎥ and 24.23 ㎍/㎥ while values at 150 m were 10.89 ㎍/㎥ and 10.61 ㎍/㎥, respectively, indicating the average concentration decreased as altitude increased. PM2.5 and PM10 values at 30 m above the natural environment were 9.03 ㎍/㎥ and 11.21 ㎍/㎥ while those at 150 m were 3.42 ㎍/㎥ and 3.57 ㎍/㎥, respectively, showing lower average concentrations as altitude increased. PM2.5 and PM10 values at 30 m above the residential area were 10.65 ㎍/㎥ and 12.06 ㎍/㎥ while those at 150 m were 4.24 ㎍/㎥ and 5.17 ㎍/㎥, also demonstrating lower PM concentrations as altitude increased. The PM concentrations decreased as altitude increased at all tested sites and also decreased between environments in the following order: construction site, residential area, and natural environment. The results of this study are significant because PM concentrations were measured at various altitudes at different land-use sites. The results are expected to serve as basic data for decision-making in both regional and urban planning.

The Characteristics of Secondary Carbonaceous Species within PM10 and PM2.5 in Seoul and Incheon Area (서울과 인천지역 PM10 과 PM2.5 중 2차생성 탄소성분 추정)

  • Park Jin Soo;Kim Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • To investigate secondary carbonaceous species within PM$_{10}$ and PM$_{2.5}$ in Seoul urban Metropolitan Area (SMA), Korea. atmospheric particulate matters samples were collected at two sites of SMA at UOS (The University Of Seoul station) sites and IHU (InHa University of Incheon station) during the period of 4 to 14 January and 12 to 22 May, 11 to 15 August 2004, and their characteristics were qualitatively discussed. during January and May and August of 2004. Daily average mass concentration 0.095 mg/㎥ in PM$_{10}$ and 0.053 mg/㎥ in PM$_{2.5}$ for mass respectively. were observed in SMA. The concentrations of carbonaceous species contributed 18.4% and 16.4% of PM$_{2.5}$ and PM$_{10}$ during the sampling period, respectively, of which OC accounted for 68% and 52% more of the total carbon (TC). OC and EC concentrations and their mass percentages were higher in PM$_{2.5}$ than in PM$_{10}$ which could be attributed to generation process. Organic aerosols would constitute up to 38% of PM$_{2.5}$ based on the evaluation of 1.6 for the ratio of OC to organic particulate. Secondary organic carbon (SOC) were estimated to be more than 13% and up to 68% of total OC based on the minimum OC/EC ratio of 1.06/1.11 using least square method. Comparisons of OC and EC with trace elements. As results of carbonaceous species analysis, the dominant factor in view of fine particle (PM$_{10}$/PM$_{2.5}$) is primary emission source such as mobile, fossil fuel combustion etc. during winter time in SMA. But in summer periods, remarkable fine particle increasing factor was secondary organic carbon dependent to photochemical reaction. reaction.n. reaction.

Aerosol Density Determined Using Micro-orifice Uniform Deposit Impactor and Aerosol Dust Monitors Data at Seoul (다단입자채집기와 입자계수기 자료를 이용한 서울 에어러솔 밀도 계산)

  • Kim, Jeong-Eun;Lee, Hae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.298-304
    • /
    • 2010
  • In order to calculate the aerosol bulk densities of $PM_{1.0}$ and $PM_{10}$, aerosol mass and number concentrations were measured for the period of December 2008~April 2009. $PM_{1.0}$ and $PM_{10}$ mass concentrations were measured using a cascade impactor (Micro-Orifice Uniform Deposit Impactor, MOUDI) while their volume concentrations were calculated based on number concentrations from an environmental dust monitor (EDM). Normal aerosol size distribution fitting functions were retrieved for number size distribution since aerosols < $2.5{\mu}m$ were measured from the EDM. Strong correlation was found between $PM_{1.0}$ mass and volume concentrations obtained with a $R^2$ of 0.95. The calculated average bulk densities of $PM_{1.0}$ and $PM_{10}$ were $1.97{\pm}0.33g/cm^3$ and $2.15{\pm}0.18g/cm^3$, respectively.

Comparison of Ambient Real-Time PM2.5 Concentrations at Major Roadside with on those at Adjacent Residential Sites in Seoul Metropolitan City (서울시 도로변지역과 인근 주거 밀집지역의 실시간 대기 중 PM2.5농도 비교)

  • Yun, Dongmin;Kim, Bokyeong;Lee, Dongjae;Lee, Seonyeob;Kim, Sungroul
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.875-882
    • /
    • 2015
  • In 2013, International Agency for Research on Cancer (IARC) concluded that outdoor air pollution is carcinogenic to humans, with the particulate matter component of air pollution most closely associated with sufficient evidence of increased cancer incidence by exposure to particulate matter component of air pollution. Motor vehicles are one of a major emission sources of fine particle ($PM_{2.5}$) in urban areas. A large number of epidemiological studies have reported a positive association of morbidity or mortality with distance from the roadside. We conducted this study to assess the association of $PM_{2.5}$ concentrations measured at roadside hotspots with those at adjacent residential sites using real-time $PM_{2.5}$ monitors. We conducted real-time $PM_{2.5}$ measurements for rush hour periods (08:00~10:00 and 18:00~20:00) at 9 roadside air monitoring Hotspot sites in metropolitan Seoul over 3 weeks from October 1 to 21, 2013. Simultaneous measurements were conducted in residential sites within a 100 m radius from each roadside air monitoring site. A SidePak AM510 was used for the real-time $PM_{2.5}$ measurements. Medians of roadside $PM_{2.5}$ concentrations ranged from $9.8{\mu}g/m^3$ to $38.3{\mu}g/m^3$, while corresponding median values at adjacent residential sites ranged from $4.4{\mu}g/m^3$ to $37.3{\mu}g/m^3$. $PM_{2.5}$ concentrations of residential sites were 0.97 times of hotspot roadside sites. Distributions of $PM_{2.5}$ concentrations in roadside and residential areas were also very similar. Real-time $PM_{2.5}$ concentrations at residential sites, (100 m adjacent), showed similar levels to those at roadside sites. Increasing the distance between roadside and residential sites, if needed, should be considered to protect urban resident populations from $PM_{2.5}$ emitted by traffic related sources.

Insights into the Factors Determining the Aerosol Distribution Characteristics of the Asian Dust on the Basis of the Concurrent Analysis of PM2.5, PM10, and TSP During the Spring Season of 2001 (PM2.5, PM10, TSP의 시간대별 관측결과에 기초한 황사기간 중 분진의 분포특성에 대한 고찰: 서울시의 4대 관측점을 중심으로 한 2001년 봄철 황사 기간에 대한 사례연구)

  • 김기현;김민영;신재영;최규훈;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.419-426
    • /
    • 2002
  • The concentrations of three different fractions of particulate matters including PM2.5, PM10, and TSP were compared between the Asian Dust (AD) and non-AD (NAD) periods during the spring season of 2001. For the purpose of this comparative analysis, the data sets were obtained from four different observatory sites located within the city boundary of Seoul that concurrently measure those three fractions of PM at hourly intervals. According to our study, several conclusions can be drawn to describe relationships between the AD event and PM distribution characteristics. First of all, it is apparent that the concentrations of PM are distinctively distinguished between AD and NAD. If the extent of contribution to the AD events are assessed on the quantitative basis, it appears that their magnitude increases on the order of PM2.5, PM10, and TSP. As a result, the increase of PM observed during AD event is dominated by the coarse rather than fine fraction of PM. Moreover, when their relationships were assessed in terms of fractional ratios, it was found that TSP/PM10 ratios were almost constant, regardless of the occurrences of AD. On the other hand, the coarse/fine or TSP/PM2.5 ratios changed dramatically between AD and NAD periods. The results of our analysis cleary distinguishes quantitative role of each PM fraction between AD and NAD period, while suggesting indirectly the possible control of source processes on such relationships.

Emission Characteristics of PM10 and PM2.5 in Thermal Power Plants Using Different Fuel Types (연료별 화력발전시설의 미세먼지(PM10 및 PM2.5) 배출특성)

  • Park, Hyun-Soo;Lee, Duk-An;Yang, Jeong-Go;Jang, Seong-Guk;Kim, Hwan-Beom;Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.534-541
    • /
    • 2018
  • Concentrations of total particulate matter (TPM), $PM_{10}$ and $PM_{2.5}$ were measured at three different sites based on each different fuel type (solid, liquid and gas) used in thermal power plants operating in Yeosu and Gwangyang National Industrial Complexes during 2017. The highest concentrations of TPM, $PM_{10}$, and $PM_{2.5}$ were observed at the solid fuel facility, and these values were $3.356mg/Sm^3$, $2.342mg/Sm^3$ and $1.834mg/Sm^3$, respectively. The ratio of $PM_{2.5}$ to TPM was the highest value of 54.6% in solid fuel case, and the lowest was 35.7% found in liquid fuel case. As a result of analyzing 9 kinds of metal compound with respect to each particle size, the metal concentration of TPM is higher than those of $PM_{10}$ and $PM_{2.5}$ in all fuel types. Total concentrations of metal elements in TPM by fuel difference are $1.2702mg/Sm^3$ in solid fuel, 0.0603 mg/Sm3 in liquid fuel, and $0.0733mg/Sm^3$ in gas fuel, respectively. Relatively higher total metal concentration in gas fuel than in liquid fuel was found; and this could be higher Cr and Al concentrations in use of gas fuel. As a result of estimating the emission factors of each facility, in case of solid fuel, TPM emissions per electricity production were found to be 0.7080 kt/PJ, followed by liquid fuel and gas fuel. $PM_{10}$ and $PM_{2.5}$ emissions per hour of electricity production were similar to those of TPM.