• Title/Summary/Keyword: $PM_{10}$ and $PM_{2.5}$ concentrations

Search Result 1,377, Processing Time 0.04 seconds

Studies on intrauterine factors influencing on implantation of embryo (수정란 착상에 영향을 미치는 자궁내인자에 관한 연구)

  • Lee, Sung-soo;Kwun, Jong-kuk
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.531-542
    • /
    • 1992
  • The present study was performed to identify the factors influencing on early pregnacy and embryo implantation in rabbit. Serum, uterine fluid, and uterine tissue were collected on day 0, 3, 5, 7 and 9 of pregnancy. The intrauterine environment of receptive phase and refractory phase was compared by measuring protein synthetic capacity of endometrium, amino acid composition and concentrations of lipids(phospholipid, cholesterol). The results obstained were as follows : 1. The concentrations of total protein were significantly increased (p<0.01) on day 5 ($7.00{\pm}0.55$), 7($6.29{\pm}0.65$), and 9($6.34{\pm}0.61$), compared to those on day 0($5.50{\pm}0.12g/100m{\ell}$) in serum. The concentration of albumin on day 0 was $0.81{\pm}0.05$ and reached maximum on day 5 ($1.59{\pm}0.07g/100m{\ell}$) in serum. The concentrations of total protein were significantly increased(p<0.01) on day 5($1.56{\pm}0.10$), 7($1.99{\pm}0.22$), compared to those on day 0($0.38{\pm}0.02g/100m{\ell}$) in uterine fluid. The concentration of albumin on day 5($0.78{\pm}0.05g/100m{\ell}$) was higher than those on the other days in uterine fluid. 2. The incorporation rates of [$^3H$]-leucine into protein were significantly increased(p<0.01) on day 5 ($919.6{\pm}97.5$), 7($1445.4{\pm}95.9$) and 9($450.38{\pm}28.71$), compared to those on day 0($328.2{\pm}38.9cpm/mg$ protein) in endometrium. The incorporation rates in colehicine-treated endometrium on day 5 ($1341.9{\pm}73.8$), 7($1729.4{\pm}63.3cpm/mg$ protein) were significantly higher(p<0.01) than those on the other days. 3. The compositions of amino acid were not distinctly changed during early pregnancy in serum. The composition ratios of methione, lysine were distinctly decreased on day 3, compared to those on day 0 in uterine fluid. Those of glycine, alanine were increased on day 9, compared to those on other days but his tidine decreased in uterine fluid. 4. The concentrations of total phospholipid and total cholesterol were significantly decreased(p<0.01) on day 3($77.9{\pm}15.5$, $61.5{\pm}21.2$), compared to those on day 0($164.0{\pm}33.9$, $167.2{\pm}46.2mg/100m{\ell}$)in serum. The concentrations of total phospholipid and total cholesterol on day 9 ($47.3{\pm}13.4$, $37.7{\pm}9.6mg/100m{\ell}$) were significantly higher(p<0.01) than those on the other days in uterine fluid. 5. Total phopholipid/total cholesterol ratios were not significantly changed during early pregnancy in serum. However, total phospholipid/total cholesterol ratios on day 5 ($2.00{\pm}0.42$), 7 ($1.11{\pm}0.77$) and 9 ($1.47{\pm}0.30$) were higher than those on day 3($0.84{\pm}0.41$) in uterine fluid. 6. The concentrations of phosphatidylcholine and phosphatidylserine were significantly increased (p<0.01) on the other days, compared to those on day 0 during early pregnancy in serum. The concentrations of phosphatidylcholine were significantly increased(p<0.01),compared to those on day 0 and those of phosphatidyl-ethanolamine were consistently increased but not significant in early pregnancy in uterine fluid.

  • PDF

Analysis of the high PM10 concentration episode on July 2005 at Seoul (2005년 7월 서울시 미세먼지 고농도 현상에 대한 분석)

  • Lee, Hyung-Min;Kim, Jung Youn;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.7 no.2
    • /
    • pp.49-57
    • /
    • 2011
  • High concentration of PM10 was reported on late July, 2005 in Seoul along with high particulate ion concentrations in PM2.5. To identify the reason for the severe air pollution episode, time series analysis of the PM10 concentration in the monitoring sites over Korea, wind sector analysis, trend analysis of the ion concentrations, and air mass trajectory analysis were carried out. It was found that the episode could be classified into two separate periods; first one between July 22 and 27 and second one between July 28 and 31. During the first period, the PM10 concentrations at Seoul were in good correlation with the PM10 concentration three hours before at Chuncheon. Trajectory analysis showed that air mass moved from north and turned to west at Kangwon province to Seoul. The concentrations of PM10 mass and ionic species were lower than the second period. During the second period, air mass moved from northern China to Seoul directly and the PM10 concentrations all over the mid-Korean peninsula showed the same trend. These observations suggest that the air pollution during the second period was affected by direct transport of air pollutants from northern China. Thus, the air quality at Seoul during both periods were influenced by long-range transport from outside rather than by local sources, but with different transport patterns.

Interrelationships Between Follicular Size, Estradiol-17β, Progesterone and Testosterone Concentrations in Individual Buffalo Overian Follicles

  • Palta, P.;Bansal, N.;Manik, R.S.;Prakash, B.S.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.293-299
    • /
    • 1998
  • This study was undertaken to measure the concentrations of estradiol-$17{\beta}$, progesterone and testosterone, and to study their relationship with each other and with follicular size in individual buffalo ovarian follicles categorized as small (4 to 5 mm diameter), medium (6 to 9 mm diameter) and large (${\geq}10mm$ diameter). Steroid hormone concentrations varied markedly within follicles of each size category. Estradiol-$17{\beta}$ concentrations (pmol/ml) were positively related to follicular diameter (R = 0.34, n = 308, p < 0.001) and were significantly higher (p < 0.001) in large (1$118.46{\pm}30.25$), compared to those in medium follicles ($50.32{\pm}8.29$) which, in turn were significantly higher (p < 0.001) than those in small follicles ($19.70{\pm}$5.57). Progesterone and testosterone concentrations (pmol/ml) were not related to follicular diameter and were not different among small ($330.99{\pm}27.32$ and $17.68{\pm}2.44$ respectively), medium ($384.84{\pm}26.20$ and $36.47{\pm}4.55$, respectively) and large follicles ($253.25{\pm}32.23$ and $22.57{\pm}4.48$, respectively). Estradiol-$17{\beta}$ and progesterone concentrations were positively related (R = 0.39, n = 47, p < 0.01) in small, unrelated in medium and negatively related in large follicles (R = -0.59, n = 23, p < 0.01). There was no relationship between estradiol-$17{\beta}$ and testosterone concentrations in follicles of all the three size categories. Progesterone and testosterone concentrations were positively related in large follicles (R = 0.57, n = 18, p < 0.02). There was no relationship between the two hormones in small and medium sized follicles. When the follicles with estradiol-$17{\beta}$/progesterone molar ratios of > 1.00 were considered non-atretic, and the rest at different stages of atresia, 197/208(95%) follicles were found to be atretic.

Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea (서울지역 장기간 강수와 미세먼지의 특성 분석에 기반한 미세먼지 세정효과)

  • Suji Han;Junshik Um
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.367-385
    • /
    • 2023
  • The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016 (2016년 봄철 서울의 PM10, PM2.5 및 OC와 EC 배출원 기여도 추정)

  • Ham, Jeeyoung;Lee, Hae Jung;Cha, Joo Wan;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.

Development of a Deep Learning-based Midterm PM2.5 Prediction Model Adapting to Trend Changes (경향성 변화에 대응하는 딥러닝 기반 초미세먼지 중기 예측 모델 개발)

  • Dong Jun Min;Hyerim Kim;Sangkyun Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.251-259
    • /
    • 2024
  • Fine particulate matter, especially PM2.5 with a diameter of less than 2.5 micrometers, poses significant health and economic risks. This study focuses on the Seoul region of South Korea, aiming to analyze PM2.5 data and trends from 2017 to 2022 and develop a mid-term prediction model for PM2.5 concentrations. Utilizing collected and produced air quality and weather data, reanalysis data, and numerical model prediction data, this research proposes an ensemble evaluation method capable of adapting to trend changes. The ensemble method proposed in this study demonstrated superior performance in predicting PM2.5 concentrations, outperforming existing models by an average F1 Score of approximately 42.16% in 2019, 58.92% in 2021, and 34.79% in 2022 for future 3 to 6-day predictions. The model maintains performance under changing environmental conditions, offering stable predictions and presenting a mid-term prediction model that extends beyond the capabilities of existing deep learning-based short-term PM2.5 forecasts.

The Health Effects of PM2.5: Evidence from Korea (대기오염의 건강위해성 연구 - PM2.5를 중심으로 -)

  • Hong, Jong-Ho;Ko, Yookyung
    • Environmental and Resource Economics Review
    • /
    • v.12 no.3
    • /
    • pp.469-485
    • /
    • 2003
  • This paper reports on the results of epidemiological investigation of daily health effects in the elderly associated with daily exposure to particulate matters in Korea. Our main focus is on the potential difference in health effects between PM10 and PM2.5. While the Korean environmental authority has set an ambient standard for PM10, the government currently does not monitor PM2.5, which has no national standard. A daily data on respiratory symptoms as well as PM concentrations are collected for a total of 120 days. Using a probit model, we find statistically significant negative health effects of PM2.5 on respiratory symptoms among the nonsmoking elderly, while PM10 does not show such effects from the estimation. This result suggests that, for air quality regulatory purposes, PM2.5 can be a more appropriate air pollutant than PM10.

  • PDF

Investigation into Air Pollution in Car Shipping Workshop in Pyeongtaek Port (자동차 선적작업장의 공기오염 실태조사)

  • Kim, Ji-Ho;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • This study purposed to investigate air pollution in car shipping yards and, for this purpose, we selected an outdoor open-air yard and an indoor ramp into the ship and measured the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10, PM2.5 and heavy metals in the air. The results of this study are as follows. No significant difference was observed in temperature and humidity between the outdoor and indoor workshop, and the average air flow was 0.52 m/s in the indoor workshop, which is higher than 0.19 m/s in the outdoor workshop(p<0.01). The average concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10 and PM2.5 according to workplace were 0.03 ppm(${\pm}0.01$), 0.03 ppm(${\pm}0.01$), 0.46 ppm(${\pm}0.22$), $39.44{\mu}g/m^3$(${\pm}2.45$) and $5.45{\mu}g/m^3$(${\pm}1.15$) respectively in the outdoor workshop, and 0.15 ppm(${\pm}0.05$), 0.22 ppm(${\pm}0.06$), 8.85 ppm(${\pm}3.35$), $236.39{\mu}g/m^3$(${\pm}58.21$) and $152.43{\mu}g/m^3$(${\pm}35.42$) respectively in the indoor workshop. Thus, the concentrations of gaseous substances in the indoor workshop were 4.9-19.2 times higher than those in the outdoor workshop, and the concentrations of fine dusts were 5.9-27.9 times higher(p<0.01). In addition, according to the result of investigating pollutant concentrations according to displacement and the number of car loaded when shipping gasoline cars into the ship, no significant relation between the number of cars loaded and pollutants was observed in shipping passenger cars, but the concentrations of nitrogen dioxide and carbon monoxide got somewhat higher with the increase of the number of cars loaded(p<0.05). In addition, the concentrations of nitrogen dioxide, carbon monoxide, PM10 and PM2.5 in the air were significantly higher when shipping recreational vehicles, the displacement of which is larger than passenger cars, than when shipping passenger cars(p<0.01). On the other hand, the average heavy metal concentrations of the air in indoor workshop were: lead $-0.05{\mu}g/m^3$(${\pm}0.10$); chromium $-0.90{\mu}g/m^3$(${\pm}0.18$); zinc $-0.38{\mu}g/m^3$(${\pm}0.24$); copper $-0.18{\mu}g/m^3$(${\pm}0.22$); and manganese and cadmium not detected. In addition, the complaining rates of 'asthma,' a major symptom of chronic respiratory diseases, were 18.5% and 22.5% respectively in indoor workers and outdoor workers. Thus the rate was somewhat higher in indoor workers but the difference was not statistically significant. The complaining rates of 'chronic cough' and 'chronic phlegm' were very low and little different between indoor and outdoor workers. The results of this study show that the reason for the higher air pollution in indoor than in outdoor workshop is incomplete combustion of fuel due to sudden start and over-speed when cars are driven inside the ship. In order to prevent high air pollution, efficient management measures should be taken including the observance of the optimal speed, the improvement of old ships and the installation of efficient ventilation system.

Ionic Compositions and Carbonaceous Matter of PM2.5 at Ieodo Ocean Research Station (이어도 해양과학기지 PM2.5의 이온과 탄소 조성 특성)

  • Han, Jihyun;Kim, Jahan;Kang, Eunha;Lee, Meehye;Shim, Jae-Seol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.701-712
    • /
    • 2013
  • The purpose of this study is to determine concentrations and compositions of $PM_{2.5}$ and their characteristic variations at Ieodo Ocean Research Station in the East China Sea and to examine the influence of air pollutants transported from Asia continents. $O_3$ and meteorological parameters were measured since June 2003 and $PM_{2.5}$ filter samples were collected from June 2004 to June 2008. In total, 244 samples were analyzed for water soluble ions and carbonaceous compounds. The mean mass concentration of $PM_{2.5}$ and $O_3$ were $21.8{\pm}14.9{\mu}g/m^3$ and $51.6{\pm}16.1$ ppb, respectively. The average concentrations (mass fractions) of sulfate and ammonium were $6.26{\mu}g/m^3$ (28.74%) and $1.59{\mu}g/m^3$ (7.31%), respectively. Nitrate was considered to be lost through evaporation due to long stay at the station. The mean concentrations of EC and OC were $1.01{\mu}g/m^3$ and $2.34{\mu}g/m^3$, respectively, from June 2006 to June 2008. The average OC/EC ratio was 2.31. The organic matter converted from OC by multiplying 2.1 and elemental carbon constituted 22.60% and 4.66% of $PM_{2.5}$ mass, respectively.