• 제목/요약/키워드: $PM_{10}$ and $PM_{2.5}$ concentrations

검색결과 1,386건 처리시간 0.032초

국내 다양한 미소환경에서의 계절별 초미세먼지 및 오존 실내·외 농도 비 (Seasonal Indoor-to-Outdoor Ratio (I/O Ratio) of Fine Particulate Matter and Ozone Concentrations in Various Microenvironments in South Korea)

  • 김지수;곽수영;이기영
    • 한국환경보건학회지
    • /
    • 제50권4호
    • /
    • pp.257-266
    • /
    • 2024
  • Background: Exposure to fine particulate matter (PM2.5) and ozone (O3) poses potential health risks. The Indoor-to-Outdoor ratio (I/O ratio) is a valuable tool for understanding indoor air quality and identifying potential indoor sources. Objectives: The objective of this study was to determine I/O ratios of PM2.5 and O3 by different microenvironments and seasons in Korea. Methods: From December 2021 to November 2023, indoor concentrations of PM2.5 and O3 were monitored every hour in 13 microenvironments (residential indoor, office, school, restaurant, pub, café, study café, private educational institute, PC room, billiard room, screen golf center, supermarket, and shopping mall) in Korea. Hourly outdoor concentrations of PM2.5 and O3 were obtained from local air quality monitoring stations, provided by airkorea.or.kr. The hourly I/O ratio was calculated by the indoor and outdoor concentrations. Results: At the pub, billiard room, and PC room, the median PM2.5 I/O ratio exceeded 1 in all seasons, except in spring at the PC room (0.9), suggesting indoor smoking as a potential cause. The median PM2.5 I/O ratio at the restaurant exceeded 1 in winter, autumn, and summer, except for spring (0.9), indicating significant PM2.5 emission sources in the restaurant. The median O3 I/O ratio was below 0.5 in all seasons and microenvironments. Conclusions: This study provided useful data on relationships between indoor and outdoor pollution in various microenvironments by seasons. These I/O ratios could be applied for more accurate exposure assessment to protect health of human.

Perturbation of Background Atmospheric Black Carbon/PM1 Ratio during Firecracker Bursting Episode

  • Majumdar, Deepanjan;Gavane, Ashok Gangadhar
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.322-329
    • /
    • 2017
  • Perturbation in ambient particulate matter ($PM_1$, $PM_{2.5}$, $PM_{10}$) and black carbon (BC) concentrations was studied during a firecracker bursting episode in Diwali (Festival of Lights) celebrations in Nagpur, India. Firecracker bursting resulted in greater escalation in fine particulates over coarse particulates while $PM_{2.5}$ was found to be dominated by $PM_1$ concentration. On the Diwali day, daily mean concentration of $PM_{2.5}$ and $PM_{10}$ exceeded Indian National Ambient Air Quality Standards by over 1.8 and 1.5 times, respectively, while daily mean BC concentration on the same day was almost two times higher than the previous day. The BC/$PM_1$ ratio reduced remarkably from about 0.26 recorded before fire-cracker bursting activity to about 0.09 during fire-cracker bursting on Diwali night in spite of simultaneous escalation in ambient BC concentration. Such aberration in BC/$PM_1$ was evidently a result of much higher escalation in $PM_1$ than BC in ambient air during firecracker bursting. The study highlighted strong perturbations in ambient $PM_1$, $PM_{2.5}$, $PM_{10}$ concentrations and BC/$PM_1$ during the firecracker bursting episode. Altered atmospheric BC/$PM_1$ ratios could serve as indicators of firecracker-polluted air and similar BC/$PM_1$ ratios in local and regional air masses might be used as diagnostic ratios for firecracker smoke.

인구 유동에 따른 서울시 대기 중 초미세먼지 농도 변화 요인 분석 및 노출평가 (Analysis and Exposure Assessment of Factors That Affect the Concentration of Ambient PM2.5 in Seoul Based on Population Movement)

  • 우재민;신지훈;민기홍;김동준;성경화;조만수;우병열;양원호
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.6-15
    • /
    • 2024
  • Background: People's activities have been restricted due to the COVID-19 pandemic. These changes in activity patterns may lead to a decrease in fine particulate matter (PM2.5) concentrations. Additionally, the level of population exposure to PM2.5 may be changed. Objectives: This study aimed to analyze the impact of population movement and meteorological factors on the distribution of PM2.5 concentrations before and after the outbreak of COVID-19. Methods: The study area was Guro-gu in Seoul. The research period was selected as January to March 2020, a period of significant population movement changes caused by COVID-19. The evaluation of the dynamic population was conducted by calculating the absolute difference in population numbers between consecutive hours and comparing them to determine the daily average. Ambient PM2.5 concentrations were estimated for each grid using ordinary kriging in Python. For the population exposure assessment, the population-weighted average concentration was calculated by determining the indoor to outdoor population for each grid and applying the indoor to outdoor ratio to the ambient PM2.5 concentration. To assess the factors influencing changes in the ambient PM2.5 concentration, a statistical analysis was conducted, incorporating population mobility and meteorological factors. Results: Through statistical analysis, the correlation between ambient PM2.5 concentration and population movement was positive on both weekends and weekdays (r=0.71, r=0.266). The results confirmed that most of the relationships were positive, suggesting that a decrease in human activity can lead to a decrease in PM2.5 concentrations. In addition, when population-weighted concentration averages were calculated and the exposure level of the population group was compared before and after the COVID-19 outbreak, the proportion of people exceeding the air quality standard decreased by approximately 15.5%. Conclusions: Human activities can impact ambient concentrations of PM2.5, potentially altering the levels of PM2.5 exposure in the population.

광양산업단지 인근지역 대기 중 미세먼지 (PM2.5)와 산성오염물질 특성 (The Characteristics of PM2.5 and Acidic Air Pollutants in the Vicinity of Industrial Complexes in Gwangyang)

  • 강병욱;정만호;전준민;이학성
    • 한국대기환경학회지
    • /
    • 제27권1호
    • /
    • pp.16-29
    • /
    • 2011
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect data set of the acidic air pollutants in the vicinity of industrial complexes in Gwangyang. The data set was collected during sixty different days with 24 hour sampling period from January 8, 2008 through November 12, 2008. The annual mean concentrations of $HNO_3$, $HNO_2$, $SO_2$ and $NH_3$ in the gas phase were 1.12, 1.40, 10.2 and 1.28 ${\mu}g/m^3$, respectively. The annual mean concentrations of $PM_{2.5}$ ($d_p$<2.5 ${\mu}m$), $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ in the particulate phase were 29.2, 8.25, 3.30 and 3.42${\mu}g/m^3$, respectively. $HNO_3$ and $NH_3$ exhibited higher concentrations during the summer, while $HNO_2$, $PM_{2.5}$, $NO_3^-$ and $NH_4^+$ were higher during the winter. The highest level of $SO_2$ was, unlikely, observed in the summer and $SO_4^{2-}$ was not showed seasonal variation. $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ accounted for 49~57% of the $PM_{2.5}$ mass. $SO_4^{2-}$ was the most abundant component, which constituted 23~40% of $PM_{2.5}$. High correlations were found among $PM_{2.5}$, $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$.

저면관비 방법으로 동절기 토마토 육묘시 추비 농도가 묘 생장과 상토의 화학성 변화에 미치는 영향 (Influence of Post-planting Fertilizer Concentrations Supplied through Sub-irrigation in Winter Season Cultivation of Tomato on the Seedling Growth and Changes in the Chemical Properties of Root Media)

  • 박인숙;심창용;최종명
    • 생물환경조절학회지
    • /
    • 제26권1호
    • /
    • pp.35-42
    • /
    • 2017
  • 토마토를 저면관비 방법으로 육묘할 때 유묘 생장과 상토 무기원소 농도 변화에 적합한 추비의 종류 및 농도를 구명하기 위해 본 실험을 수행하였다. 육묘용 2종류의 동절기 혼합상토 피트모스 0-6mm(PM06)+perlite 1-2mm(PE2)(7:3, v/v)와 피트모스 5-15mm(PM515)+PE2(7:3, v/v)를 72공 플러그 트레이에 각각 충전하고 토마토 '도태랑다이아' 종자를 파종하여 발아시킨 후 생장상에서 35일간 육묘하였다. 자엽형성기에 추비를 시작하였고 13-2-13, 15-0-15, 20-9-20($N-P_2O_5-K_2O$) 복합비료를 순서대로 처리하였다. 추비시 생육 단계별로 $25mg{\cdot}L^{-1}$의 농도차(N 기준)를 둔 3종류의 Program을 두어 시비하였으며, 플러그 트레이의 수분이 포화 기준으로 40-50%로 감소하였을 때 저면관비하였다. 파종 후 1, 2, 4 및 5주째 혼합상토를 상부, 중간, 하부로 3등분하여 포화추출한 후 추출용액의 pH, EC 및 무기이온 농도를 분석하고, 5주 후에 유묘생장을 조사하였다. 육묘 기간 중 상토의 pH는 PM06+PE2가 PM515+PE2 보다 높았으며, 하부와 중간이상부보다 높은 경향이었다. EC는 PM06+PE2가 PM515+PE2보다 높았으며 평균적으로 상부가 하부보다 2배 이상 높았다. $NH_4-N$$K^+$ 농도는 2종류 혼합상토의 모든 시비 Program에서 육묘 후 5주까지 높아졌으며, PM06+PE2의 추비 프로그램 3에서 가장 높았다. $NO_3-N$ 농도는 PM06+PE2에서 육묘기간 동안 높아졌고 추비농도가 높을수록 그러한 경향이 뚜렷하였다. 지상부 생체중을 비롯한 유묘의 생장은 PM06+PE2의 추비 Program 2에서 가장 우수하였다. 따라서 2종류 혼합상토를 이용한 공정육묘시 13-2-13, 15-0-15 및 20-9-20을 순서대로, 질소 기준 $25mg{\cdot}L^{-1}$에서 $125mg{\cdot}L^{-1}$까지 육묘기에 따라 점차적으로 높여 추비하는 방법이 적합하다고 판단하였다.

실내 외 농도 비(I/O ratio)에 기반한 주변환경과 실내 미세먼지 농도분포 특성: 선행연구 리뷰와 여름철 부산과 평택 초등학교에서의 측정 결과를 중심으로 (Indoor and Outdoor Levels of Particulate Matter with a Focus on I/O Ratio Observations: Based on Literature Review in Various Environments and Observations at Two Elementary Schools in Busan and Pyeongtaek, South Korea)

  • 강지원;안찬중;최원식
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1691-1710
    • /
    • 2020
  • 본 연구에서는 평택과 부산의 초등학교를 대상으로 학교 주변과 교실 내를 포함하여 총 16개 지점에서 PM2.5(particulate matter less than 2.5 ㎛ in diameter) 및 PM10(particulate matter less than 10 ㎛ in diameter)을 동시에 측정하였고, 이 결과를 여러 국외 선행연구 리뷰를 통해서 획득한 실내·외 PM2.5 및 PM10 측정 농도 및 I/O ratio(Indoor/Outdoor ratio)와 비교하였다. 선행연구는 총 30건의 연구에서 144건의 사례를 수집하여 이를 실내활동, 측정 계절, 건물용도, 주변환경에 대해 다양한 항목별로 분류하여 본 연구의 측정결과와 비교하였다. 선행연구 결과에서 PM2.5는 흡연활동이나 요리활동 등의 실내 연소작용이 없는 환경에서는 외기농도가 실내농도에 중요한 영향을 미치는 반면, PM10은 외기농도와 함께 물리적 활동에 따른 재 비산이 중요한 실내 배출원일 것으로 보인다. 평택과 부산의 초등학교에서의 측정결과도 선행연구 리뷰 결론을 뒷받침하는 양상을 보였고, 공기청정기 사용이 미세먼지 저감에 효율적인 것으로 나타났다. PM2.5와 PM10은 실내 배출원 및 외기와의 상호작용 영향이 다를 수 있으며 환기방식에서는 강제환기가 자연환기보다 PM2.5와 PM10의 실내농도 감소에 더 효율적일 수 있는 것으로 보인다.

종관 기상 분포에 따른 PM2.5 농도의 공간적 차이에 관한 연구 (A Study on Spatial Differences in PM2.5 Concentrations According to Synoptic Meteorological Distribution)

  • 채다은;이순환
    • 한국환경과학회지
    • /
    • 제31권12호
    • /
    • pp.999-1012
    • /
    • 2022
  • To investigate the reason for the spatial difference in PM2.5 (Particulate Matter, < 2.5 ㎛) concentration despite a similar synoptic pattern, a synoptic analysis was performed. The data used for this study were the daily average PM2.5 concentration and meteorological data observed from 2016 to 2020 in Busan and Seoul metropolitan areas. Synoptic pressure patterns associated with high PM2.5 concentration episodes (greater than 35 ㎍/m3) were analyzed using K-means cluster analysis, based on the 900 hPa geopotential height of NCEP (National Centers for Environmental Prediction) FNL (Final analysis) data. The analysis identified three sub-groups related to high concentrations occurring only in Busan and Seoul metropolitan areas. Although the synoptic patterns of high PM2.5 concentration episodes that occur independently in Busan and Seoul metropolitan areas were similar, there was a difference in the intensity of pressure gradient and its direction, which tends to be an important factor determining the movement time of pollutants. The spatial difference in PM2.5 concentration in the Korean Peninsula is due to the difference and direction of the atmospheric pressure gradient that develops from southwest to northeast direction.

두파장 스캐닝 라이다 시스템을 이용한 고해상도 미세먼지 질량 농도 산출 (High Resolution Fine Dust Mass Concentration Calculation Using Two-wavelength Scanning Lidar System)

  • 노영민;김덕현;최성철;최창기;김태경;김가형;신동호
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1681-1690
    • /
    • 2020
  • 532와 1064 nm 두 파장 관측 채널을 구비하고 수평으로 360° 스캐닝 관측이 가능한 스캐닝 라이다 시스템을 개발하였다. 또한, 두 파장에서의 후방산란계수를 이용하여 미세먼지를 PM2.5-10(조대)와 PM2.5(미세)입자로 구분하는 분석도 개발하여 스캐닝 라이다 시스템의 데이터 분석에 적용하였다. 개발된 스캐닝 라이다를 이용한 울산 온산공단에서 관측에서 각각 22 - 110 ㎍/㎥과 7 - 78 ㎍/㎥의 분포를 보이는 PM10과 PM2.5의 질량 농도를 성공적으로 산출하였다. 분석된 결과는 라이다 관측 영역 주변에서 지상에서 측정된 질량농도와 유사한 값을 보였으며, 공장 등에서 배출되는 지점에서는 이 각각 80-110 ㎍/㎥과 60-78 ㎍/㎥의 고농도가 측정되는 사례를 확인하였다.

도시와 농촌 거주 노령인구의 시간활동양상 차이와 초미세먼지 (PM2.5) 노출 (Time-activity Patterns and PM2.5 Exposure of the Elderly in Urban and Rural Areas)

  • 임채윤;곽수영;이기영;홍윤철
    • 한국환경보건학회지
    • /
    • 제42권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives: Personal exposure to air pollution is affected by contact over time and by location. The purpose of this study was to determine the relationship between personal exposure to $PM_{2.5}$ and the time-activity patterns of the elderly in urban and rural areas. Methods: A total of 44 elderly participants were recruited for a 24-hour $PM_{2.5}$ personal exposure measurement. Twenty-four were from Seoul (urban area) and 20 were from Asan (rural area). Energy expenditure and spatiotemporal positioning were monitored through $PM_{2.5}$ measurement. Spearman correlation analysis was conducted to determine the relationship between $PM_{2.5}$ and time-activity pattern. Results: Daily average $PM_{2.5}$ personal exposures were $19.1{\pm}9.7{\mu}g/m^3$ in Seoul and $29.1{\pm}16.9{\mu}g/m^3$ in Asan. Although outdoor exposure was higher in Seoul than in Asan, residential indoor exposure was higher in Asan than in Seoul. Higher $PM_{2.5}$ personal exposure in Asan could be explained by longer time in residential indoor environments and higher indoor $PM_{2.5}$ concentrations. Seoul elderly had higher energy expenditure, which may be due to the use of mass transportation. Conclusion: Personal exposure to $PM_{2.5}$ was higher among Asan elderly than Seoul elderly because of high residential indoor concentrations and longer residential time. Lack of energy spent and higher personal exposure to $PM_{2.5}$ might have led to higher risk among the Asan elderly.

Comparison of the Number Concentration and the Chemical Composition of the Atmospheric PM2.5 in Jeju Area

  • Kang, Chang-Hee;Hu, Chul-Goo
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.743-753
    • /
    • 2014
  • The number concentrations and the water soluble ionic concentrations of $PM_{2.5}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010, to clarify their characteristics. $PM_{2.5}$ number concentrations vary from 22.57 to $975.65particles/cm^3$ with an average value of $240.41particles/cm^3$, which have been recorded evidently high in spring season as compared with those in other season. And the concentrations in small size ranges are greatly higher than those in large size ranges, so the number concentration in the size range $0.25{\sim}0.45{\mu}m$ has more than 94% of the total number concentration of $PM_{2.5}$. The major ionic components in $PM_{2.5}$ are $SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$, which are mainly originated from anthropogenic sources, on the other hand, the concentrations of $Cl^-$, $K^+$, $Ca^{2+}$ and $Mg^{2+}$ are recorded relatively lower levels. The concentrations of the major ionic components are very high in spring season, but the concentration levels of the other components are recorded significantly high in winter season. On the other hand, in summer season, the lowest concentration levels are observed for overall components as well as the sum of them. The concentration ratios of nss-$SO{_4}^{2-}/SO{_4}^{2-}$ and nss-$Ca^{2+}/Ca^{2+}$ are 98.1% and 88.9%. And the concentration ratio of $SO{_4}^{2-}/NO_3{^-}$(3.64) is greatly higher than the value in urban area due to no large $NO_x$ emission sources in the measurement. In addition, the correlation and the factor analysis for the number and the ionic concentrations of $PM_{2.5}$ are performed to identify their sources. From the Pearson correlation analysis and the factor analysis, it can be suggested that the smaller parts(< $0.5{\mu}m$) of $PM_{2.5}$ is contributed by anthropogenic sources, but the sources of the remaining larger parts of $PM_{2.5}$ are not able to be specified sources in this study.