• Title/Summary/Keyword: $PM_{10}$ and $PM_{2.5}$ concentration

Search Result 2,039, Processing Time 0.049 seconds

Dust Spatial Distribution and Emission of Tunnel Ventilated Windowless Broiler Building (터널환기 무창육계사의 분진크기별 분포와 배출농도에 관한 연구)

  • Choi, H.C.;Yeon, G.Y.;Spmg, J.I.;Kang, H.S.;Kwon, D.J.;Yoo, Y.H.;Yang, C.B.;Chun, S.S.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • This study investigated the spatial distribution of dust originating from tunnel-ventilated windowless broiler building measuring 12 m wide, 61 m long, with a side wall height of 3 m and a capacity of 16,982 birds. Dust concentrations in terms of total suspended particles (TSP), and particulate matter of sizes $10\;{\mu}m$(PM10), $2.5\;{\mu}m$(PM2.5), and $1\;{\mu}m(PM1)$ were measured at 30 minutes interval by using GRIMM Aerosol Monitor (GRIMM AEROSOL). The spatial distribution of dust showed the lower dust concentration in the inlet than in the outlet of the tunnel ventilation, and dust concentration decreasing as the dust size decreased, as follows: $317.9\;{\mu}g/m^3$ TSP; $74.7{\mu}m/m^3$ PM10; $9.7\;{\mu}g/m^3$ PM2.5; and $6.2\;{\mu}g/m^3$ PM1 in the inlet; and $2,678.5\;{\mu}g/m^3$ TSP; $555.5\;{\mu}g/m^3$ PM10; $33.3\;{\mu}g/m^3$ PM2.5; and $10.2\;{\mu}g/m^3$ PM1 in the outlet. The dust concentration emitted from the tunnel ventilated fan was $446.6\;{\mu}g/m^3$ TSP; $129.1\;{\mu}g/m^3$ PM10; $15.8\;{\mu}g/m^3$ PM2.5; and $6.1\;{\mu}g/m^3$ PM1 in the 3 meters from the fan and $25.1\;{\mu}g/m^3$ TSP; $8.8\;{\mu}g/m^3$ PM10; $5.6\;{\mu}g/m^3$ PM2.5; and $4.9\;{\mu}g/m^3$ PM1 in the 50 meters from the fan.

  • PDF

A Study of PM levels in Subway Passenger Cabins in Seoul Metropolitan area (서울시 지하철 객차내에서의 미세먼지 농도 평가)

  • Roh, Young-Man;Park, Wha Me;Lee, Choel Min;Kim, Yoon Shin;Park, Dong Sun;Kim, Suck Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • This study was performed to investigate the concentrations of PM($PM_{10}$, $PM_{2.5}$, $PM_{1}$) and it's affecting factors in the subway from line 1 to line 8 in Seoul metropolitan area, from Sep. 1 to 30, 2005. PM concentrations were measured at the entrances and centers in subway passenger cabins by a light scattering equipment. And the affecting factors to PM were estimated based on the number of passenger, door open and close and running area etc. The geometric means of $PM_{10}$, $PM_{2.5}$ and $PM_{1}$ concentration in Seoul subway passenger cabins were $214{\mu}g/m^3$, $86.6{\mu}g/m^3$ and $27.0{\mu}g/m^3$, respectively. These mean concentrations in subway carriage were higher when it ran on an underground track than on a ground track. And running time(7AM-9AM, 11AM-13PM, 6PM-8PM) significantly influenced to the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_{1}$. Daily profile of $PM_{10}$ and $PM_{2.5}$, $PM_{1}$ expressed as an 10 minutes average, showed similar variation pattern over day period. In correlation analysis, significant relations among $PM_{10}$, $PM_{2.5}$ and $PM_{1}$ were detected(p〈0.01). In particular, correlation coefficient between $PM_{10}$and $PM_{1}$ was highly significant(r=0.94). Further study is needed to identity the sources of PM in subway cabins and to compare pollutants concentration among subway lines.

Comparison of the Number Concentration and the Chemical Composition of the Atmospheric PM2.5 in Jeju Area

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.743-753
    • /
    • 2014
  • The number concentrations and the water soluble ionic concentrations of $PM_{2.5}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010, to clarify their characteristics. $PM_{2.5}$ number concentrations vary from 22.57 to $975.65particles/cm^3$ with an average value of $240.41particles/cm^3$, which have been recorded evidently high in spring season as compared with those in other season. And the concentrations in small size ranges are greatly higher than those in large size ranges, so the number concentration in the size range $0.25{\sim}0.45{\mu}m$ has more than 94% of the total number concentration of $PM_{2.5}$. The major ionic components in $PM_{2.5}$ are $SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$, which are mainly originated from anthropogenic sources, on the other hand, the concentrations of $Cl^-$, $K^+$, $Ca^{2+}$ and $Mg^{2+}$ are recorded relatively lower levels. The concentrations of the major ionic components are very high in spring season, but the concentration levels of the other components are recorded significantly high in winter season. On the other hand, in summer season, the lowest concentration levels are observed for overall components as well as the sum of them. The concentration ratios of nss-$SO{_4}^{2-}/SO{_4}^{2-}$ and nss-$Ca^{2+}/Ca^{2+}$ are 98.1% and 88.9%. And the concentration ratio of $SO{_4}^{2-}/NO_3{^-}$(3.64) is greatly higher than the value in urban area due to no large $NO_x$ emission sources in the measurement. In addition, the correlation and the factor analysis for the number and the ionic concentrations of $PM_{2.5}$ are performed to identify their sources. From the Pearson correlation analysis and the factor analysis, it can be suggested that the smaller parts(< $0.5{\mu}m$) of $PM_{2.5}$ is contributed by anthropogenic sources, but the sources of the remaining larger parts of $PM_{2.5}$ are not able to be specified sources in this study.

Numerical Simulation of Extreme Air Pollution by Fine Particulate Matter in China in Winter 2013

  • Shimadera, Hikari;Hayami, Hiroshi;Ohara, Toshimasa;Morino, Yu;Takami, Akinori;Irei, Satoshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.25-34
    • /
    • 2014
  • In winter 2013, extreme air pollution by fine particulate matter ($PM_{2.5}$) in China attracted much public attention. In order to simulate the $PM_{2.5}$ pollution, the Community Multiscale Air Quality model driven by the Weather Research and Forecasting model was applied to East Asia in a period from 1 January 2013 to 5 February 2013. The model generally reproduced $PM_{2.5}$ concentration in China with emission data in the year 2006. Therefore, the extreme $PM_{2.5}$ pollution seems to be mainly attributed to meteorological (weak wind and stable) conditions rather than emission increases in the past several years. The model well simulated temporal and spatial variations in $PM_{2.5}$ concentrations in Japan as well as China, indicating that the model well captured characteristics of the $PM_{2.5}$ pollutions in both areas on the windward and leeward sides in East Asia in the study period. In addition, contribution rates of four anthropogenic emission sectors (power generation, industrial, residential and transportation) in China to $PM_{2.5}$ concentration were estimated by conducting zero-out emission sensitivity runs. Among the four sectors, the residential sector had the highest contribution to $PM_{2.5}$ concentration. Therefore, the extreme $PM_{2.5}$ pollution may be also attributed to large emissions from combustion for heating in cold regions in China.

Efficiency of Removal for Indoor air pollutants by Air Cleaners in the Indoor Environments (공기청정기의 일부 실내공기 오염물질 제거효율에 관한 연구)

  • Lee Tae-Hyung;Kim Yoon-Shin;Hong Seung-Cheol;Lee Cheol-Min;Kim Jong-Cheol;Jeon Hyung-Jin;Kim Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.5
    • /
    • pp.491-497
    • /
    • 2005
  • In this study, we investigated $PM_{10},\;NO_2$, and l-hydroxypyrene(1-OHP) in urine at indoor environments which are 35 houses and 20 hospitals for using air cleaner and non-using air cleaner in Seoul metropolitan area and Kyoung-gi province from April, 2003 to February, 2004. Moreover, we examined effect of improvement for indoor air quality and health effect by concentration of 1-OHP also we investigated removal efficiency by air cleaner for $PM_{10},\;NO_2$, and 1-OHP that were 28.5\%,\;27.4\%,\;and\;42.1\%$ respectively. Concentration of$PM_{10},\;NO_2$, and 1-OHP were $19.02\pm18.14{\mu}g/m^3,\;8.66\pm3.06ppb,\;and\;0.19\pm0.18{\mu}g/g$, creatinine when air cleaner was no worked. The concentration for $PM_{10},\;NO_2$. and 1-OHP were $13.60\pm10.79{\mu}g/m^3,\; 6.29\pm2.71ppb,\;and\;0.11\pm0.10{\mu}g/g$ creatinine, respectively. It was significant statistically. Therefore, it is considered using the air cleaner to remove the partial pollutants in indoor environment and is positive effect for health.

Weekday/weekend Chemical Characteristics of Water-Soluble Components of PM10 at Busan in Springtime (부산지역 봄철 주중/주말의 PM10 중 이온성분의 화학적 조성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.785-792
    • /
    • 2015
  • This study investigates weekday/weekend characteristics of $PM_{10}$ concentration and chemical composition of water-soluble ions in Busan in the spring of 2013. Contribution rate of water-soluble ions to PM10 concentration in weekday/weekend were 41.5% and 38.5%, respectively. Contribution rate of SO_4{^{2-}}$ to total ion mass in weekday/weekend were 30.4% and 33.8%, respectively. Contribution rate of total inorganic water-soluble ions in PM10 in weekday/weekend were 42.2% and 39.1% (mean 41.4%), respectively. $[NO_3{^-}/SO_4{^{2-}}]$ ratio in weekday/weekend were 1.01 and 0.97(mean 0.99), respectively, which indicated that weekday ratio was higher. Contribution rate of sea salts and $Cl^-/Na^+$ ratio in PM10 in weekday/weekend were 8.1% and 7.6%, 0.37% and 0.41%, respectively. This research will help understand chemical composition of water-soluble ions during the weekday/weekend and will be able to measure the contribution level of artificial anthropogenic source on urban air.