• Title/Summary/Keyword: $P2X_3$ receptor

Search Result 87, Processing Time 0.03 seconds

Effects of Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture Solution on Adipocyte Differentiation and Gene Expression in 3T3-L1 Adipocytes (마황천오 약침액이 3T3-L1 지방세포 분화 및 유전자발현에 미치는 영향)

  • Kang, Kyung-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.31 no.4
    • /
    • pp.168-178
    • /
    • 2014
  • Objectives : Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture(MCP) has been used to treat obesity in Clinical Korean Medicine. MCP solution(MCPS) is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and lipogenesis. Methods : In the present study, we examined the effects of MCPS on differentiation and lipogenesis of 3T3-L1 adipocytes. To elucidate the mechanism of the effects of MCPS on lowering lipid content in 3T3-L1 adipocytes, we examined whether MCPS modulates the expressions of transcription factors to induce lipogenesis and adipogenic genes related to regulate the accumulation of lipids. Results : Our results showed that MCPS significantly inhibited differentiation and lipogenesis of 3T3-L1 adipocytes in a dose-dependent manner. MCPS suppressed the mRNA expressions of cytidine-cytidine-adenosine-adenosine-thymidine(CCAAT)/enhancer binding proteins ${\alpha}$($C/EBP{\alpha}$), C/EBP ${\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$) genes related to the induction of adipose differentiation. MCPS inhibited the mRNA expressions of adipose-specific aP2, adipsin, lipoprotein lipase(LPL), CD36, TGF-${\beta}$, and leptin genes related to the fat formation. MCPS downregulated the mRNA expressions of liver X receptor(LXR) ${\alpha}$ and fatty acid synthase(FAS) genes related to the induction of lipogenesis. In addition, MCPS reduced the production of adipocyte-induced pro-inflammatory cytokines. Conclusions : MCPS could regulate the accumulation of lipids and expression of adipogenic genes via inhibition of transcript factors related to induction of adipose differentiation.

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease (Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이)

  • Jang, Hyun-Jun;Choi, Jang Hyun;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.

A Study on Chest X-ray Using Ancillary Device for Child Radiography (방사선촬영 보조기구를 이용한 어린이 흉부 엑스선 검사에 관한 연구)

  • Rhee, Do-byung;Lee, Somi;Choi, Hyunwoo;Kim, Jong-ki;Lee, Jongmin
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.48-54
    • /
    • 2018
  • In this study, We developed a Ancillary device for child radiography for X-ray of children under 5 years old and verified its effectiveness. Chest X-rays of children younger than 5 years of age were performed by Supine method at the position of Table detector, Short - Source to Image Receptor Distance(SID). Existing Supine and Short -SID imaging methods cause many problems, such as errors in image reading and excessive radiation exposure dose to patients, but the use of an Ancillary device for child radiography(ADCR) solves these problems. A total of 160 children were divided into the Upright group using ADCR and Supine group without ADCR. The chest X-ray image was visually evaluated by two radiologists with reference to the European Commission's List of Quality Criteria for Diagnostic Radiographic Images in Pediatrics. The total score of the qualitative evaluation was 5.15% higher in the chest upright method using ADCR than in the chest supine method without ADCR, and the chest upright method score was higher than that of the chest supine method in items 1 to 7. whether infants have deep inspiration or not, 4.87% higher for item 1, whether infants rotate or not and the degree of tilting, 0% higher for the item 2, the reproduction of image from just above apices of lungs to T12/L1, 0% for the item 3, reproduction of the vascular pattern in central 2/3 of the lungs, 6.92% higher for the item 4, reproduction of the trachea and the proximal bronchi, 12.9% higher for the item 5, visually sharp reproduction of the diaphragm and costo-phrenic angles, 10% higher for the item 6, reproduction of the spine and paraspinal structures and visualisation of the retrocardiac lung and the mediastinum, and 3.65% higher for the item 7. Items 2 and 3 showed no statistically significant differences(P > 0.05), and items 1, 4, 5, 6, and 7 showed statistically significant differences(P < 0.05). In conclusion, Upright method using ADCR in pediatric chest X-ray is considered as a good alternative to existing Supine method.

Further Evidence of Linkage at the tva and tvc Loci in the Layer Lines and a Possibility of Polyallelism at the tvc Locus

  • Ghosh, A.K.;Pani, P.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.601-605
    • /
    • 2005
  • Three lines of White Leghorn (WL) chickens (IWJ, IWG and IWC) maintained at Central Avian Research Institute, Izatnagar (UP), were used for chorioallantoic membrane (CAM) and liver tumour (LT) assay. Eleven-day-old embryos of each line were partitioned into three groups and inoculated with 0.2 ml of subgroup A, subgroup C and an equal mixture of subgroup A and C Rous sarcoma virus (RSV). Subgroup virus receptor on the cell surface membrane for subgroup A is coded for by tumour virus a (tva) locus and for subgroup C by tumour virus c (tvc) locus. The random association of the genes at the tva and tvc loci in IWJ and IWC line was assessed and the $x^2$-values for phenotypic classes were found to be significant, indicating the linkage between the tva and tvc loci. The linkage value was estimated to be 0.09 on pooled sex and pooled line basis. On the basis of four subclass tumour phenotypes a 4-allele model was proposed for tva locus having $a^{s1}$, $a^{s2}$, $a^{r1}$ and $a^{r2}$ alleles and the frequencies were calculated as 0.47, 0.13, 0.13 and 0.27 for IWJ line, 0.31, 0.33, 0.14 and 0.22 for IWG line and 0.44, 0.11, 0.21 and 0.24 for IWC line, respectively. Similarly, for tvc locus the frequencies of four alleles i.e. $c^{s1}$, $c^{s2}$, $c^{r1}$ and $c^{r2}$ were calculated as 0.42, 0.20, 0.21 and 0.17 for IWJ line, 0.42, 0.17, 0.27 and 0.14 for IWG line and 0.30, 0.21, 0.16 and 0.33 for IWC line, respectively. The $x^2$-values for all classes of observations were not significant (p>0.05), indicating a good fit to the 4-allele model for the occurrence of 4-subclass tumour phenotypes for tva and tvc loci. On the basis of the 2-allele model both tva and tvc locus carries three genotypes each. But, on the basis of the 4-allele model tva and tvc locus carries 10 genotypes each. The interaction between A-resistance and C-resistance (both CAM and LT death) was ascertained by taking the 10 genotypes of tva locus and 3 genotypes of tvc locus by pooling the lines and partitioning the observations into 3 classes. The $x^2$-values for the genotypic classes of CAM (-) LT (+) and CAM (-) LT (-) phenotypes to mixed virus (A+C) infection were found to be highly significant (p<0.01), indicating increased resistance, which indicates the joint segregation of $a^r$ and $c^r$ genes, suggesting the existence of close linkage between the tva and tvc loci. Therefore, an indirect selection approach using subgroup C viruses can be employed to generate stocks resistant to subgroup A LLV, obviating contamination with the most common agent causing LL in field condition.

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer

  • Rho, Seung Bae;Lee, Keun Woo;Lee, Seung-Hoon;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.506-518
    • /
    • 2021
  • The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

Effects of Coenzyme Q10 on the Expression of Genes involved in Lipid Metabolism in Laying Hens (Coenzyme Q10 첨가 급여가 산란계의 지방대사 연관 유전자 발현에 미치는 영향)

  • Jang, In Surk;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.43 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • The aim of this study was to investigate the expression patterns of key genes involved in lipid metabolism in response to dietary Coenzyme Q10 (CoQ10) in hens. A total of 36 forty week-old Lohmann Brown were randomly allocated into 3 groups consisting of 4 replicates of 3 birds. Laying hens were subjected to one of following treatments: Control (BD, basal diet), T1 (BD+ CoQ10 100 mg/kg diet) and T2 (BD+ micellar of CoQ10 100 mg/kg diet). Birds were fed ad libitum a basal diet or the basal diet supplemented with CoQ10 for 5 weeks. Total RNA was extracted from the liver for quantitative RT-PCR. The mRNA levels of HMG-CoA reductase(HMGCR) and sterol regulatory element-binding proteins(SREBP)2 were decreased more than 30~50% in the liver of birds fed a basal diet supplemented with CoQ10 (p<0.05). These findings suggest that dietary CoQ10 can reduce cholesterol levels by the suppression of the hepatic HMGCR and SREBP2 genes. The gene expressions of liver X receptor (LXR) and SREBP1 were down regulated due to the addition of CoQ10 to the feed (p<0.05). The homeostasis of cholesterol can be regulated by LXR and SREBP1 in cholesterol-low-conditions. The supplement of CoQ10 caused a decreased expression of lipid metabolism-related genes including $PPAR{\gamma}$, XBP1, FASN, and GLUTs in the liver of birds (p<0.05). These data suggest that CoQ10 might be used as a dietary supplement to reduce cholesterol levels and to regulate lipid homeostasis in laying hens.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.

Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells

  • Jinshun Zhan;Zhiyong Gu;Haibo Wang;Yuhang Liu;Yanping Wu;Junhong Huo
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.303-314
    • /
    • 2024
  • Objective: Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. Methods: GRECs were cultured in basal medium or basal medium containing 1 ㎍/mL LPS, or 1 ㎍/mL LPS and 20 ㎍/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. Results: Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPS-induced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05

Purification, crystallization and X-ray diffraction of heparan sulfate bounded human RAGE

  • Park, Jun bae;Yoo, Youngki;Ong, Belinda Xiang Yu;Kim, Juyeon;Cho, Hyun-Soo
    • Biodesign
    • /
    • v.5 no.3
    • /
    • pp.122-125
    • /
    • 2017
  • Receptor for advanced glycation end products (RAGE) is one of the single transmembrane domain containing receptors and causes various inflammatory diseases including diabetes and atherosclerosis. RAGE extracellular domain has three consecutive IgG-like domains (V-C1-C2 domain) which interact with various soluble ligands including heparan sulfate or HMGB1. Studies have shown that each ligand induces different oligomeric forms of RAGE which results in a ligand-specific signal transduction. The structure of mouse RAGE bound to heparan sulfate has been previously determined but the electron density map of heparan sulfate was too ambiguous that the exact position of heparin sulfate could not be defined. Furthermore, the complex structure of human RAGE and heparin sulfate still remains elusive. Therefore, to determine the structure, human RAGE was overexpressed using bacterial expression system and crystallized using the sitting drop method in the condition of 0.1 M sodium acetate trihydrate pH 4.6, 8 % (w/v) polyethylene glycol 4,000 at 290 K. The crystal diffracted to 3.6 Å resolution and the space group is C121 with unit cell parameters a= 206.04 Å, b= 68.64 Å, c= 98.73 Å, α= 90.00°, β= 90.62°, γ= 90.00°.

Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

  • Kim, Jeung-Il;Kim, Hye-Young;Kim, Sun-Mi;Lee, Sae-A;Son, Yong-Hae;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express $PSY_1$, $PSY_6$, and $PSY_{11}$ receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to $NAD^+$, an agonist of the human $PSY_{11}$ receptor, and $NADP^+$ as well as ATP, an agonist for $PSY_1$ and $PSY_{11}$ receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by $NAD^+$ and $NADP^+$ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. $NAD^+$ and $NADP^+$ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. $NAD^+$- and $NADP^+$-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process.