• Title/Summary/Keyword: $O_v-Ti^{3+}$ interstitial

Search Result 10, Processing Time 0.028 seconds

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.

A Study on the Defect Structure of $TiO_2$ (Rutile) by Electrical Conductivity Measurements

  • Son, Jae-Cheon;Yu, In-Kyu
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.131-136
    • /
    • 1996
  • The electrical conductivity of polycrystalline TiO2 samples was measured over the temperature range 1000°-1400℃ and from 0.21 to 10-16 atm of oxygen. Based on the excellent fit observed between the theoretically derived relatin σ3=(Aσ+B)Po2-1/2+D'σ2 and the experimental conductivity data, the nonstoichimetric defect structure of TiO2 was rationalized in terms of a defect model involving quasi-free electrons and both singly and doubly ionized oxygen vacancies. The standard enthalpy of formation for the following defect reactions in TiO2. (a) OO={{{{ { 1} over {2 } }}O2(g)+VO+e'; Δ{{{{ { H}`_{o } ^{a } }}=5.15(eV) (b) OO={{{{ { 1} over {2 } }}O2(g)+VO+2e'; Δ{{{{ { H}`_{0 } ^{ a} }}=6.30(eV) (c) VO=VO+e'; Δ{{{{ { H}`_{0 } ^{a } }}=1.15(eV) were determined from the temperature dependence of A and B obtained from the above relation and from the experimental expression between the electron mobility and temperature. The electrical conductivity of TiO2 in air below approximately 950℃ appears, on the basis of this investigation, to be impurity controlled due to the presence of aluminum rather than intrinsic conduction.

  • PDF

Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process (Plasma Electrolytic Oxidation 방식으로 제조된 B Doped TiO2의 표면특성과 광촉매 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.552-561
    • /
    • 2021
  • For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.

Polaron Conductivity of Rutile Doped with MgO (MgO 도프된 Rutile의 Polaron 전도도)

  • Kim, Keu-Hong;Kim, Hyung-Tack;Choi, Jae-Shi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.215-224
    • /
    • 1987
  • The electrical conductuctivity measurements have been made on polycrystalline samples of various compositions in the $MgO-TiO_2$ system from 600 to $1100^{\circ}C$ under $Po_2$'s of $10^{-8}\;to\;10^{-1}$atm. Plots of log ${\sigma}$ vs. 1/T at constant $Po_2$ are found to be linear with the inflections, and the activation energies are 1.94eV for the intrinsic range and 0.48eV for the extrinsic range, respectively. The log ${\sigma}$ vs. log $Po_2$ curves are found to be linear at constant temperature, and the conductivity dependences of $Po_2$ are closely approximated by ${\sigma}\;{\alpha}\;Po_2^{-1/6}$ for the extrinsic and ${\sigma}\;{\alpha}\;Po_2^{-1/4}$ for the intrinsic range, respectively. The dominant defects in this system are believed to be oxygen vacancy for the extrinsic and $Ti^{3-}$ interstitial for the intrinsic range. The conduction mechanisms in both the extrinsic and the intrinsic ranges are proposed by the results of the electrical conductivity dependence on the oxygen partial pressure. Polaron model was suggested in the extrinsic region by the conductivity dependences of temperature and $Po_2$.

  • PDF

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Young;Cho, Byung-Won;Ju, Jeh-Beck;Yun, Kyung-Suk;Lee, Eung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.88-99
    • /
    • 1992
  • For the development of semiconducting photoelectrode to be more stable and efficient in the process of photoelectrolysis of the water, pure titanium rods were oxidized by anodic oxidation, furance oxidation and flame oxidation and used as electrodes. The Indium islands were formed by electrodeposition of "In" thin film on $TiO_2$ and Ti by electrodeposition. Also $A1_2O_3$ and NiO islands were coated on Ti by the electron-beam evaporation technique. The maximum photoelectrochemical conversion efficiency(${\eta}$) was 0.98% for flame oxidized electrode($1200^{\circ}C$ for 2min in air). Anodically oxidized electrodes have photoelectrochemical conversion efficiency of 0.14%. Furnace oxidized electrode($800^{\circ}C$ for 10min in air) has 0.57% of photoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The $In_2O_3$ coated $TiO_2$ exhibits 0.8% of photoelectrochemical efficiency but much higher value of ${\eta}$ was obtained with the Increase of applied blas voltage. However, $Al_2O_3$ or NiO coated $TiO_2$ shows much low value of ${\eta}$. The efficiency was dependent on the presence of the metallic interstitial compound $TiO_{0+x}$(x<0.33) at the metal-semiconductor interface and the thickness of the suboxide layer and the external rutile scale.

  • PDF

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering (스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성)

  • Woo, Kee Do;Kim, Sang Mi;Kim, Dong Gun;Kim, Dae Young;Kang, Dong Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Defect Structure and Electrical Conduction Mechanism of Manganese Oxide-Titanium Dioxide (산화망간-이산화티탄계의 결함구조 및 전기전도메카니즘)

  • Keu Hong Kim;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.128-134
    • /
    • 1982
  • The electrical conductivity of n-type polycrystalline MnOx-Ti$O_2$ system containing 0.40, 0.80, and 1.60 mol % of manganese oxide has been measured from 100 to 400$^{\circ}$C and 1100 to 1300$^{\circ}$C under oxygen partial pressures of$10^{-8}\;to\;10^{-1}$ atm. Plots of log conductivity vs. reciprocals of absolute temperature at constant $Po_2$'s are found to be linear with an inflection, and the activation energies obtained from the slopes appear to be an enough average 0.18eV for the extrinsic and 3.70eV for the intrinsic. The log $\sigma$ vs. log $Po_2$ are found to be linear at $Po_2$'s of $10^{-8}\;to\;10^{-1}$atm. The conductivity dependences on $Po_2$at the two temperature regions are closely approximated by $\sigma{\propto}$Po_2$-1}6$ for the extrinsic and $${\sigma}{\propto}Po_2^{-1}4}$$ for the intrinsic, respectively. The predominant defects are believed to be Vo-2e' and $Ti^3$${\cdot}$interstitial at the extrinsic and intrinsic. From the interpretations of conductivity dependences on temperature and$Po_2$ , the conduction mechanisms and possible band models are proposed.

  • PDF

Mechanical Properties and Bio-Compatibility of Ti-Nb-Zr-HA Biomaterial Fabricated by Rapid Sintering Using HEMM Powders (고에너지 밀링분말과 급속소결을 이용한 Ti-Nb-Zr-HA 생체복합재의 기계적 성질 및 생체적합성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Sang-Hyuk;Lee, Seung-Min;Kim, Ji-Young;Ko, Hye-Rim;Kim, Sang-Mi
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.384-390
    • /
    • 2011
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy has been widely used as an alternative to bone due to its excellent biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity. Therefore, nontoxic biomaterials with a low elastic modulus should be developed. However, the fabrication of a uniform coating is challenging. Moreover, the coating layer on Ti and Ti alloy substrates can be peeled off after implantation. To overcome these problems, it is necessary to produce bulk Ti and Ti alloy with hydroxyapatite (HA) composites. In this study, Ti, Nb, and Zr powders, which are biocompatible elements, were milled in a mixing machine (24h) and by planetary mechanical ball milling (1h, 4h, and 6h), respectively. Ti-35%Nb-7%Zr and Ti-35%Nb-7%Zr-10%HA composites were fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70MPa using mixed and milled powders. The effects of HA addition and milling time on the biocompatibility and physical and mechanical properties of the Ti-35%Nb-7%Zr-(10%HA) alloys have been investigated. $Ti_2O$, CaO, $CaTiO_3$, and $Ti_xP_y$ phases were formed by chemical reaction during sintering. Vickers hardness of the sintered composites increases with increased milling time and by the addition of HA. The biocompatibilty of the HA added Ti-Nb-Zr alloys was improved, but the sintering ability was decreased.

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄피막의 광 전기분해 특성에 대한 연구)

  • Park, Seong-Yong;Cho, Won-Il;Cho, Byung-Won;Lee, Eung-Cho;Yun, Kyung-Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.47-56
    • /
    • 1990
  • Pure titanium rods were oxidized by anodic oxidation, furnace oxidation and flame oxidation and used as a electrode in the photodecomposition of water. The maximum photoelectrochemical conversion efficiency(${\eta}$) was found for flame oxidized electrode ($1200^{\circ}C$ for 2 min in air), 0.8 %. Anodically oxidized electrodes have minimum photoelectrochemical conversion efficiencies, 0.3 %. Furnace oxidized electrode ($800^{\circ}C$ for 10min in air) has 0.5% phtoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The efficiency shows a parallelism with the presence of the metallic interstitial compound $TiO_{O+X}$(X < 0.33) at the metal-semiconductor interface, the thickness of the sub oxide layer and that of the external rutile scale.

  • PDF