• 제목/요약/키워드: $O_3$ Generation

검색결과 985건 처리시간 0.025초

한국의 시골지역에서의 오존농도의 특성 (Characteristics of Ozone Concentration in the Rural Area of Korea)

  • 정용승
    • 한국환경과학회지
    • /
    • 제4권1호
    • /
    • pp.63-70
    • /
    • 1995
  • 1993년 7월부터 1994년 6월까지 1년간 시골지역에서 지면 부근의 오존을 연속적으로 측정하여 5분 평균치를 연구에 이용하였다. 이 관측은 북위 $37.4{\circ}$, 동경 $127.6{\circ}$ 에 위치한 충북 청원군 강내에서 실시되었으며, 1년 평균값은 17ppbㅠ이고 월평균은6-47ppb이다. 여름에 최대값이 발생하고 겨울에 최소값이 나타나며, 이들은 인위적인 배출물 및 광화학 반응과 관련이 있따. 오존으 일변화는 15:00~16:00시에 최대치와 07:00~08:00시에 최소치가 발생한다. 오존이 80ppb이상 발생하는 기간에는 북-북서풍의 안정한 기류가 유입할때 발생하는 반면, 여름에 오존이 매우 낮게 발생하는 기간에는 북태평양에서 유입되는 기류와 함꼐 발생하였다. 그러므로 장거리에 근원을 둔 인위적인 대기오염의 이동(LRTAP)이 시골지역의 국지적인 오존의 발생보다 더 큰 기여를 하고 있음을 시사한다.

  • PDF

디스크 경도에 따른 소결마찰재와 내열강 디스크의 마찰·마모 특성 (Study of the Tribological Characteristics Based on the Hardness of the Brake Disk between the Sintered Metallic Friction Material and the Heat-resisting Steel Disks)

  • 나선주;박형철;김상호
    • Tribology and Lubricants
    • /
    • 제31권2호
    • /
    • pp.42-49
    • /
    • 2015
  • Because of the growing need for high-speed transport options such as trains and aircraft, there is increasing demand for technology related to high-speed trains. Among them, braking systems are important in high-speed trains in terms of reliability. Especially, the disk brake system, in use in most high-speed trains, transforms kinetic energy into thermal energy and noise. Therefore, the material properties of both the friction materials and disks are expected to influence the tribological characteristics. In this paper, the tribological characteristics depend on the hardness of the brake disks between the Cu-based sintered metallic friction material and the heat-treated heat-resisting steel disks. A lab-scale dynamometer used to perform braking tests at a variety of braking speeds using dry conditions. The test results revealed that the hardness of the disks affects the friction coefficients, friction stabilities, and wear rates. Thus, the brake system using the heat-resisting steel disk requires proper heat-treatment. These differences are considered to be caused by the change in tribological mechanisms and the generation of an oxide layer on the friction surfaces. The oxide layers on the friction surfaces are confirmed to Fe2O3 by x-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) analysis.

퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링 (Fuzzy Neural System Modeling using Fuzzy Entropy)

  • 박인규
    • 한국멀티미디어학회논문지
    • /
    • 제3권2호
    • /
    • pp.201-208
    • /
    • 2000
  • 이 논문에서는 시계열 예측을 위하여 퍼지 엔트로피에 의한 입력공간의 분할과 퍼지 제어규칙을 자동으로 생성하는 방법을 제안하고, Mackey-Glass 데이터 Set을 이용한 시계열 예측 문제에 적용하여 그 성능을 검증한다. 이 방법은 샤논 함수와 퍼지 엔트로피 함수를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 이력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안되는 알고리즘을 매개변수의 수를 줄이기 위하여 제어 규칙의 결론부의 출력값은 신경망의 가중치로 구성하여 퍼지 신경망의 복잡도를 줄임으로서 추론형과 기술형 접근법을 혼합한 형태의 학습 알고리즘이다.

  • PDF

잉여슬러지를 이용한 저온 열적전처리 및 바이오 가스 특성 평가 (Evaluation of Low-temperature Thermal Pre-treatment and Biogas Characteristics using Waste Activated Sludge)

  • 최재훈;정성엽;김지태
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.299-307
    • /
    • 2019
  • The purpose of this study was to investigate the effect of low temperature thermal pre-treatment on biodegradation of waste activated sludge for anaerobic digestion as a countermeasure for increasing sludge generation. The experimental condition was accomplished in 2 %, 4 %, and 6 % TS concentration, and $70^{\circ}C$, $80^{\circ}C$, $90^{\circ}C$ of temperature for a maximum of 120 minutes retention time. Then, it was followed by analysis of physical/chemical properties, BMP test and composition of biogas. The biogas characteristic was evaluated by applying the modified Gomperz model. As a result, solubility of dissolved substrate, such as $SCOD_{Cr}$, soluble carbohydrate, and soluble protein, and biogas production increased as temperature increased. Solubilization efficiency at $90^{\circ}C$ was 18.4 %, 17.03 % and 16.88% in 2 %, 4 %, and 6 % TS concentration respectively. Also, solubilization rates of carbohydrate and protein similarly increased. BMP test results also showed that methane production in excess sludge increased to 0.194, 0.187 and $0.182m^3/kg$ VS. respectively, and lag phase decreased to 0.145, 0.220, 0.351 day due to acceleration of the hydrolysis step. Consequently, low-temperature thermal pre-treatment could increase biodegradability of sludge, positively affecting biogas production and sludge reduction.

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점 (Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications)

  • 최상기;이웅배;김영모;홍석원;손희종;이윤호
    • 상하수도학회지
    • /
    • 제36권2호
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작 (Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs)

  • 배은정;장은비;최근수;서가은;장승미;박영욱
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

Expression of FMD virus-like particles in yeast Hansenula polymorpha and immunogenicity of combine with CpG and aluminum adjuvant

  • Jianhui Zhang;Jun Ge;Juyin Li;Jianqiang Li;Yong Zhang;Yinghui Shi;Jiaojiao Sun;Qiongjin Wang;Xiaobo Zhang;Xingxu Zhao
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.15.1-15.13
    • /
    • 2023
  • Background: Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural viruses and are replication- and infection-incompetent. Objectives: The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of recombinant VLPs as an FMD vaccine was evaluated. Methods: BALB/c mice were immunized with recombinant purified VLPs using CpG oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, enzyme-linked immunospot assay, and flow cytometry. Results: The VLPs of FMD were purified successfully from yeast protein with a diameter of approximately 25 nm. The immunization of mice showed that animals produced high levels of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher levels of interferon-γ and CD4+ T cells were observed in mice immunized with VLPs. Conclusions: The expression of VLPs of FMD in H. polymorpha provides a novel strategy for the generation of the FMDV vaccine.

전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구 (Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications)

  • 김세현;이정민;;김민규;정유진;백강준
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.

온가가 애반딧불이의 생식과 발육에 미치는 영향 (Effects of Temperature on Reproduction and Development of Firefly, Luciola lateralis(Coleoptera: Lampyridae))

  • 이기열;안기수;강효중;박성규;김종길
    • 한국응용곤충학회지
    • /
    • 제42권3호
    • /
    • pp.217-223
    • /
    • 2003
  • 항온조건이 애반및불이(Luciolalateralig)의 발육과 생식에 미치는 영향을 조사하였다. 난, 유충, 용의 발육기간은 15-3$0^{\circ}C$의 범위에서는 온도가 높을수록 참았으며, 1$0^{\circ}C$와 35$^{\circ}C$에서는 발육이 되지 많았다. 부화율은 23$^{\circ}C$ 93.3%, $25^{\circ}C$ 91.8%로 23$^{\circ}C$, $25^{\circ}C$에서 부화율이 가장 높았으며, 유충기간은 15$^{\circ}C$에서 341.5 $\pm$ 23.2일, 2$0^{\circ}C$에서 265.5 $\pm$ 17.5일, $25^{\circ}C$에서 250.9$\pm$11.7일이었다. 용기간은 15$^{\circ}C$에서 94.7$\pm$11.5일, 2$0^{\circ}C$에서 417$\pm$9.1일, $25^{\circ}C$에서 18.5$\pm$7.4일이었고, 우화을은 각각 23.3, 89.3, 80.7%이었다. 성충 암컷의 수명은 15$^{\circ}C$에서 18.0일, 2$0^{\circ}C$에서 20.4일, $25^{\circ}C$에서 10.7일, 3$0^{\circ}C$에서 5.8일이었다. 평균산란수는 다른 온도조건보다 2$0^{\circ}C$에서 가장 많았다. 각 태별발육영점온도는 난이 10.6$^{\circ}C$, 유충 14.$0^{\circ}C$ 그리고 용은 13.1$^{\circ}C$이었고, 유효적산온도는 각각 214.8, 1,564.8, 229.2일도이었다. 세대당 순증식을은(R$_{o}$ ) 23$^{\circ}C$에서 177.19로써 가장 높았고, 내적자연증가율은(r$_{m}$ )27$^{\circ}C$에서 0.019로 가장 높았다. 이 결과로써 애반딧불이의 발육과 생식에 적합한 온도는 2$0^{\circ}C$에서 $25^{\circ}C$이었다.