• Title/Summary/Keyword: $O_3$ Generation

Search Result 985, Processing Time 0.028 seconds

Field Study on Mating Confusion of Synthetic Sex Pheromone in the Striped Rice Borer, Chilo suppressalis (Lepidoptera: Pyralidae) (성 pheromone에 의한 이화명나방의 교미교란에 관한 연구)

  • Lee J.O.;Park J.S.;Goh H.G.;Kim J.H.;Jun J.G.
    • Korean journal of applied entomology
    • /
    • v.20 no.1 s.46
    • /
    • pp.25-30
    • /
    • 1981
  • Mating confusion of the Striped Rice Borer with its synthetic sex pheromone, a mixture of (Z)-11-hexadecenal and (Z)-13-octadecenal in a ratio of 4.5 : 1, was estimated during the first and second generation in rice field near Suweon. The mixture was highly disruptive to pheromonal communication between males and females. The orientation behavior of male moths toward the females was confused at a dosage of 29.3g per 30a during the first generation and even at 33rr.g per $20m^3$ during the second generation.

  • PDF

Second Harmonic Generation of Low Power Laser Diode Using a Ring Enhancement Cavity (고리형 Enhancement Cavity 를 이용한 저출력 반도체 레이저의 제2조화파 발생)

  • 오차환
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.206-211
    • /
    • 1993
  • We carried out the second harmonic generation of low power CW laser diode with maximum power of 30 mW in $LilO_3$ crystals. We used a ring enhancement cavity to increase the second harmonic conversion efficiency. The ring enhancement cavity was Composed of two flat mirrors and two concave mirrors. The focal length of concave mirrors was 25 mm, and 5 mm long and 10 mm long $LilO_3$ crystals were used. We measured the second harmonic power according to the pumping power and compared with theoretical value. We obtained 397 nm second harmonic power of about $6.6{\mu}W$ in 10 mm long $LilO_3$ crystal with the fundumental 794 nm pumping power of 28 mW.

  • PDF

Decomposition Behavior of Ferro-Si3N4 for High Temperature Refractory Application (고온 내화물 응용을 위한 질화규소철 (Ferro-Si3N4)의 분해거동)

  • Choi, Do-Mun;Lee, Jin-Seok;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.582-587
    • /
    • 2006
  • Decomposition behavior of $ferro-Si_3N_4$was investigated with varying temperature and holding time in mud components for high temperature refractory applications. Porosities gradually increased with increasing temperature and holding time due to the carbothermal reduction of $Si_3N_4\;and\;SiO_2$. Silicon monoxide (SiO) as a intermediate resulted from evaporation of $Si_3N_4\;and\;SiO_2$ reacted with C sources to generate needle-like ${\beta}-SiC$ and Fe in $Si_3N_4$ acted as a catalyst in order to enhance growth of SiC grain with the preferred orientation. SiC generation yield increased with increasing holding time, all of the $Si_3N_4\;and\;SiO_2$ affected on SiC formation up to 2h. However, SiC generation was only dependent on residual $SiO_2$ over 2h, because the carbothermal reduction reaction of $Si_3N_4$ was no longer possible at that time.

Zinc-induced Apoptosis in C6 glial Cells via Generation of Hydrogen Peroxide($H_2O_2$) (신경교세포주 C6 glial에서 Zinc의 Hydrogen Peroxide($H_2O_2$) 생성을 통한 세포고사)

  • 이지현;김명선;소흥섭;김남송;조광호;이향주;이기남;박길래
    • Toxicological Research
    • /
    • v.16 no.3
    • /
    • pp.179-185
    • /
    • 2000
  • Zinc is known to generate reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide ($H_2O_2$), which eventually contribute to cytotoxicity in a variety of cell types. Here in, we demonstrated that zinc decreased the viability of C6 glial cells in a time and dose-dependent manner, which was revealed as apoptosis characterized by ladder-pattern fragmentation of genomic DNA. chromatin condensation and DNA fragmentation in Hoechst dye staining. Zinc-induced apoptosis of C6 glial cells was prevented by the addition of catalase and antioxidants including reduced glutathione (GSH), N-acetyl-L-cysteine (NAC) and pyrrolidinedithiocarbamate (PDTC). Wefurther confirmed that zinc decreased intrac-ellular levels of GSH and generated $H_2O_2$in C6 glial cells. Moreover, antioxidants also decreased the generation of zinc-induced $H_2O_2$ in C6 glial cells. These data indicated that zinc-induced the apoptotic death of C6 glial cells via generation of reactive oxygen species such as $H_2O_2$.

  • PDF

The Effect of Melatonin on Mitochondrial Function in Endotoxemia Induced by Lipopolysaccharide

  • Liu, Jing;Wu, Fengming;Liu, Yuqing;Zhang, Tao;Tang, Zhaoxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.857-866
    • /
    • 2011
  • This study examined the metabolism of free radicals in hepatic mitochondria of goats induced by lipopolysaccharide (LPS), and investigated the effects of melatonin (MT). Forty-eight healthy goats ($10{\pm}1.2\;kg$) were randomly selected and divided into four groups: saline control, LPS, MT+LPS and MT. The goats within each group were3 sacrificed either 3 or 6 h after treatment and the livers removed to isolate mitochondria. The respiration control ratio (RCR), the ADP:O ratio, the oxidative phosphorylation ratio (OPR), the concentration of $H_2O_2$ and the activities of Complex I-IV were determined. The mitochondrial membrane potential ($\Delta\psi_m$) was analyzed by flow cytometry. The results showed that RCR, O/P and OPR of the LPS group decreased (p<0.05), as well as activities of respiratory complexes, whereas the generation of $H_2O_2$ in Complex III increased (p<0.05) after 3 h, while Complex II and III increased after 6 h. Also, it was found that the mitochondrial membrane potential of the LPS group declined (p<0.05). However, pre-treatment with MT attenuated the injury induced by LPS, which not only presented higher (p<0.05) RCR, O/P, OPR, and respiratory complex activities, but also maintained the $\Delta\psi_m$. Interestingly, it is revealed that, in the MT+LPS group, the generation of $H_2O_2$ increased firstly in 3 h, and then significantly (p<0.05).decreased after 6 h. In the MT group, the function of mitochondria, the transmenbrane potential and the generation of $H_2O_2$ were obviously improved compared to the control group. Conclusion: melatonin prevents damage caused by LPS on hepatic mitochondria of goats.

Stbilization of Perovskite Phase and Enhanced DPT Characteristics of $Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3-PbTiO_3$ Ceramics by the Additionof Excess Constituent Oxides ($Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3-PbTiO_3$계에서 구성 산화물 첨가에 따른 Perovskite상 안정화 및 DPT성 증대 효과)

  • 이규만;장현명;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.925-932
    • /
    • 1993
  • The perovskite phase in PZN-PMN-PT (Pb(Zn, Mg)1/3Nb2/3O3-PbTiO3) pseudoternary ceramics was stabilized by the addition of excess constituent divalent oxides (PbO, MgO and ZnO). The excess addition of 5mol% MgO or 7.5mol% PbO fully stabilized the perovskite phase. The enhanced diffuse phase transition (DPT) and the decrease in the electrical resistivity observed in the presence of excess ZnO or MgO were interpreted in terms of the additional formation of negatively charged, short-range ordered 1:1 domains with a concomitant generation of charge carriers, holes.

  • PDF

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.

Characteristic of Oxidants Production and Dye Degradation with Operation Parameters of Electrochemical Process (전기화학적 공정의 운전인자에 따른 산화제 생성과 염료 분해 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1235-1245
    • /
    • 2009
  • The purpose of this study is to investigate electro-generation of free Cl, $ClO_2$, $H_2O_2$ and $O_3$ and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. $ClO_2$ and $H_2O_2$ generation was decreased with the increase of pH, whereas free Cl and $O_3$ was not affected by pH. RhB degradation was increase with the pH decrease.