Browse > Article
http://dx.doi.org/10.4191/KCERS.2006.43.9.582

Decomposition Behavior of Ferro-Si3N4 for High Temperature Refractory Application  

Choi, Do-Mun (Department of Ceramic Engineering, Hanyang University)
Lee, Jin-Seok (Department of Ceramic Engineering, Hanyang University)
Choi, Sung-Churl (Department of Ceramic Engineering, Hanyang University)
Publication Information
Abstract
Decomposition behavior of $ferro-Si_3N_4$was investigated with varying temperature and holding time in mud components for high temperature refractory applications. Porosities gradually increased with increasing temperature and holding time due to the carbothermal reduction of $Si_3N_4\;and\;SiO_2$. Silicon monoxide (SiO) as a intermediate resulted from evaporation of $Si_3N_4\;and\;SiO_2$ reacted with C sources to generate needle-like ${\beta}-SiC$ and Fe in $Si_3N_4$ acted as a catalyst in order to enhance growth of SiC grain with the preferred orientation. SiC generation yield increased with increasing holding time, all of the $Si_3N_4\;and\;SiO_2$ affected on SiC formation up to 2h. However, SiC generation was only dependent on residual $SiO_2$ over 2h, because the carbothermal reduction reaction of $Si_3N_4$ was no longer possible at that time.
Keywords
$Ferro-Si_3N_4$; SiC; Carbothermal reduction; Decomposition behavior; Refractory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. S. Chun and Y. W. Kim, ' Processing of Silica-Bonded Silicon Carbide Ceramics,' J. Kor. Ceram. Soc., 43 [6] 327- 32 (2006)   과학기술학회마을   DOI   ScienceOn
2 L. S. Sigl, ' Core/Rim Structure of Liquid-Phase-Sintered Silicon Carbide,' J. Am. Ceram. Soc., 76 [3] 773-76 (1993)   DOI   ScienceOn
3 K. Kometani, K. Iizuka, and T. Kaga, ' Behavior of Ferro- $Si_3N_4$ in Taphole Mud of Blast Furnace(in Jpn.),' Taikabutsu, 50 [6] 326-30 (1998)
4 H. Ohno, T. Kaga, M. Takata, and T. Moriguchi, 'The Reaction of Ferro-Silicon Nitride in Carbon Refractory(in Jpn.),' Taikabutsu, 54 [11] 574-75 (2002)
5 R. W. Rice, 'Evaluation and Extension of Physical Property- Porosity Models Based on Minimum Solid Area,' J. Mater. Sci., 31 102-18 (1996)   DOI
6 P. C. Silva and J. L. Figueiredo, 'Production of SiC and Si3N4 Whiskers in $C+SiO_2$ Solid Mixtures,' Mater. Chem. Phys., 72 326-31 (2001)   DOI   ScienceOn
7 E. Heikinheimo, I. Isomäki, A. A. Kodentsov, and F. J. J. van Loo, 'Chemical Interation between Fe and Silicon Nitride Ceramic,' J. Eur. Ceram. Soc., 17 25-31 (1997)   DOI   ScienceOn
8 H. J. Choi and J. G. Lee, 'Gontinuous Synthesis of Silicon Carbide Whiskers,' J. Mater. Sci., 30 1982-86 (1995)   DOI
9 H. J. Choi and J. G. Lee, 'Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction(in Korean),' J. Kor. Ceram. Soc., 35 [12] 1329-36 (1998)   과학기술학회마을
10 R. D. Jong, R. A. Mccauley, and P. Tambuyser, 'Growth of Twinned $\beta$-Silicon Carbide Whiskers by the Vapor-Liquid- Solid Process,' J. Am. Ceram. Soc., 70 [11] C-338-41 (1987)
11 H. Wang, Y. Berta, and G. S. Fischman, 'Microstructure of Silicon Carbide Whiskers Synthesized by Carbothermal Reduction of Silicon Nitride,' J. Am. Ceram. Soc., 75 [5] 1080-84 (1992)   DOI
12 H. P. Martin, R. Ecke, and E. Müller, 'Synthesis of Nanocrystalline Silicon Carbide Powder by Carbothermal Reduction,' J. Eur. Ceram. Soc., 18 1737-42 (1998)   DOI   ScienceOn
13 W. S. Seo and K. Koumoto, 'Stacking Faults in $\beta-SiC$ Formed during Carbothermal Reduction of $SiO_2$,' J. Am. Ceram. Soc., 79 [7] 1777-82 (1996)   DOI   ScienceOn
14 R. W. Rice, 'Comparison of Stress Concentration Versus Minimum Solid Area Based on Mechanical Property-Porosity Relations,' J. Mater. Sci., 28 2187-90 (1993)   DOI
15 J. V. Milewski, F. D. Gac, J. J. Petrovic, and S. R. Skaggs, 'Growth of Beta-Silicon Carbide Whiskers by the VLS Process,' J. Mater. Sci., 20 1160-66 (1985)   DOI