• Title/Summary/Keyword: $Ni_2Cr$ phase

Search Result 140, Processing Time 0.025 seconds

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

A Study on the low temperature magnetic properties of Fe-Cr-Ni alloys (Fe-Cr-Ni 합금의 저온에서의 자기적 성질에 관한 연구)

  • 안병덕;김진옥;장경호;송기영
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.277-283
    • /
    • 1993
  • The temperature dependence of DC magnetic susceptibilities of three austenitic Fe-Cr-Ni stainless alloys were measured in the temperature range of 4.2 and 300 K. Two alloys support a general magnetic description of austen-itic stsinless steels in terms of a two-magnetic-phase (spin glass + superparamagnetic cluster) model and one alloy shows magnetic double transition phenomena. Also this study shows that incressing the Ni/Cr ratio in Fe-Cr-Ni alloys causes a increase of the DC susceptibility peak value and a decrease of the magnetic transition temperature.

  • PDF

A Study on Bond Strength of Procelain with Non Precious Alloy (도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구)

  • Kang, Sung-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

A manufacturing process and characteristic observation of alloy blocks for dental CAD/CAM system (치과 CAD/CAM 가공용 합금블럭 제조 및 특성 관찰)

  • Kim, Chi-young
    • Journal of Technologic Dentistry
    • /
    • v.40 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • Purpose: Automatic dental prosthesis manufacturing process was accelerated by the spread of dental CAD / CAM system. The CAD / CAM system with milling alloys were needed supplement. So, sintered alloy blocks were introduced. In this study, we want to study sintered alloy block. And to evaluate the alloy block manufacture and alloy properties. Methods: The alloy powders were prepared by high pressure water dispersion method. The sintered alloy blocks were prepared by low temperature pressing method. Their components observation were EDX, and the alloy structure was observed by XRD. Results: Co-Cr alloy powders were observed to have a circle shape with an average diameter of about $100{\mu}m$ and a Ni-Cr alloy powder had a circle shape with an average diameter of about $50{\mu}m$. The Co-Cr alloy block is composed of Co (34.62 wt%), Cr (17.33 wt%), Mo (2.98 wt%), Si (0.36 wt%) and C (44.17 wt%). The Ni-Cr alloy powder was composed of Ni (40.29 wt%), Cr (19.37 wt%), Mo (3.53 wt%), Si (0.52 wt%) and C (33.18 wt%). The peak of the Co and CoCr peaks were observed in the CoCr alloy body by the means of XRD study. Cr2Ni3 of the peak was observed in the Ni-Cr alloy material. Conclusion : As a result, the following conclusions were obtained. 1. Prepared by high-pressure water-law Co-Cr alloy powder has an average diameter $100{\mu}m$, Ni-Cr alloy powder was found to have the form of sphere having an average diameter $50{\mu}m$. 2. Co-Cr alloy and Ni-Cr alloy block produced by low-temperature processing showed a certain ratio. 3. In the XRD study, Co phase appeared in Co-Cr alloy block after sintering. and Cr2Ni3 phase appeared in Ni-Cr alloy block after sintering.

Characteristics of the HVOF_sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coationg Layer (HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 특성)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.849-855
    • /
    • 1998
  • The purpose of this study was performed to compare to the characteristics (microstructure, phase change and hardness, erosion rate) of HVOF sprayed coatings with 20wt% NiCr claded and 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder. In the case of the 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ powder, microstructural feature showed that the primary $\textrm{Cr}_{3}\textrm{C}_{2}$ was remained in the coating but was barely remained in the mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating. As a results of XRD analysis, both 20wt%NiCr claded and 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder was decomposed during spraying but the degree of decomposition of the 20wt%NiCr claded was lower than 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder. After spraying the mixed powder for microhardness was higher than claded $\textrm{Cr}_{3}\textrm{C}_{2}$ powder and which was increased up to $\textrm{Hv}_{300}$= 1665 after heat treatment to $1000^{\circ}C$. however. 20wt%NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ became to decrease at $600^{\circ}C$ which was the maximum.

  • PDF

Thermodynamic Modeling of Ni-Cr-Nb-C System for Analysis of Fracture Behavior of Heat-resistant Casting Alloys (IN-657) (내열 주조 합금 (IN-657) 파괴 거동 해석을 위한 Ni-Cr-Nb-C 시스템 열역학 모델링)

  • Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.445-453
    • /
    • 2021
  • Computational thermodynamics for various alloy systems is well known as the CALPHAD technique. Gibbs energy model parameters for each phase are obtained from experimentally measured thermodynamic properties and are mainly used to predict areas not experimentally measured and to analyze experimental results thermodynamically. In this study, the thermodynamic modeling of the Ni-Cr-Nb-C quaternary system is conducted for a thermodynamic analysis of the phenomena by which heat-resistant cast alloys (IN-657) are destroyed in certain areas after long-term use. The stable phases in the system according to the Cr content, phase fraction depending on the temperature, and long-range ordering parameters for the Ni2Cr phase are calculated and compared to results obtained experimentally. The calculated thermodynamic properties suitably explain the experimentally reported fracture temperature range and the results of stable phases formed in the fractured areas. Thermodynamic modeling through the CALPHD method is expected to be useful for analyzing and predicting the thermodynamic behaviors of various cast alloys.

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

A Study on the Erosion-Resistant Cermet Film Coating using the Detonation Spray Method (폭발용사에 의한 내에로젼성 서멧 피막 코팅에 관한 연구)

  • 김현근;남인철;오재환
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The properties of the detonation sprayed cermet coating are investigated through the mechanical, corrosion and erosion test. The test results are also compared with the properties of the substrate materials, STS 329J1, dual phase stainless steel and the plasma sprayed cermet coatings. The two kinds of carbide cermet power, WC+NiCr, Cr$_3$C$_2$+NiCr were used in this experiment. The experimental results showed that the anti-corrosive and anti-erosive properties of the detonation sprayed cermet coatings are superior to the plasma sprayed cermet coatings. The WC+NiCr cermet coating appears to be more effective than Cr$_3$C$_2$+NiCr cermet coating in abrasive erosion environment, whereas the Cr$_3$C$_2$+NiCr cermet coatings are more effective in cavitation erosion environment.

  • PDF

Effect of R Phase Formation on the Mechanical Properties of 25Cr-7Ni-2Mo-4W Super Duplex Stainless Steel (25Cr-7Ni-2Mo-4W 슈퍼 2상 스테인리스강의 기계적 성질에 미치는 R상의 영향)

  • Lee, Byung-Chan;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.401-406
    • /
    • 2014
  • In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effects on the mechanical properties of 25%Cr-7%Ni-2%Mo-4%W super duplex stainless steel. The R-phase was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging. It was transformed into the ${\sigma}$-phase with an increase of the aging time. The ferrite phase was decomposed into a new austenite(${\gamma}_2$)phase and the ${\sigma}$-phase by an aging treatment. The R phase was an intermetallic compound showing higher molybdenum and tungsten concentrations than the matrix and also showed higher molybdenum and tungsten concentrations than the ${\sigma}$ phase. In the initial stage of aging, precipitation of the R-phase did not change the hardness, the strength and the elongation. The hardness and the strength increased upon a longer aging time, but the elongation rapidly decreased. These results show that the R-phase did not significantly affect the hardness and the strength, though it did influence the elongation.

High Temperature Oxidation of NiCoCrAlY-(Ta, Re, Ir) Coatings for Gas Turbines (가스터빈 엔진부품용 NiCoCrAlY-(Ta, Re, Ir) 코팅의 고온산화특성)

  • Choi, J.H.;Lee, D.B.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.129-136
    • /
    • 2006
  • The high velocity oxy-fuel sprayed coatings of 38Ni-23Co-20Cr-11Al-3Y-5Ta, 25Ni-34Co-20Cr-11Al-3Y-2Re and 32Ni-34.5Co-22Cr-11Al-0.5Ir (in wt%) were oxidized at 1000 and $1100^{\circ}C$ in air in order to find the alloying effect of Ta, Re and Ir on the oxidation properties of the NiCoCrAlY-base coatings. The primary phase of the coatings was $Ni_3Al$. The oxides formed on the coatings consisted primarily of ${\alpha}-Al_2O_3$, together with some $CoCr_2O_4,\;CoAl_2O_4$, and $Al_5Y_3O_{12}$. Tantalum oxidized to $Ta_2O_5$ and $Ta_2O_{22}$. However, no oxides of Re and Ir were detected by XRD owing to their thermodynamic inertness and/or their small amount.