• Title/Summary/Keyword: $NiO/Fe_3O_4$

Search Result 385, Processing Time 0.028 seconds

Effects of Fe2O3 Addition on Piezoelectric Properties of Pb(Ni1/3Nb2/3)O3-PbTiO3 Ceramics for Actuator Applications (액츄에이터 응용을 위한 Pb(Ni1/3Nb2/3)O3-PbTiO3 세라믹스의 압전 특성에 미치는 Fe2O3 첨가 영향)

  • Lim Eun-Kyeong;Kim Chang-Il;Lee Young-Jin;Im Jong-In;Paik Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.935-941
    • /
    • 2006
  • In this paper, the dielectric and piezoelectric properties of $0.4Pb(Ni_{1/3}Nb_{2/3})O_3+0.6Pb(Zr_{405}Ti_{595})O_3+X\;wt%\;Fe_2O_3$ ceramics were investigated with the addition of $Fe_2O_3$ and sintering temperature. Dielectric constant and piezoelectric constant increased with amount of $Fe_2O_3$ to 0.25 wt% and then decreased the further addition of $Fe_2O_3$. It seems that $Fe_2O_3$ acts as a sintering aid at the sintering temperature of $1150^{\circ}C$. By the addition of $Fe_2O_3$., sintering temperature of the system was lowered from $1250^{\circ}C\;to\;1100^{\circ}C$. The piezoelectric properties showed the maximum value of ${\varepsilon}r=4669,\;d_{33}=810(10^{-12}m/V)$, kp = 77 %, Qm = 55, in $0.4Pb(Ni_{1/3}Nb_{2/3})O_3\;-0.6Pb(Zr_{0.405}Ti_{0.595})O_3+0.25wt%\;Fe_2O_3$ ceramics having composition near the morphotropic phase boundary. The composition may be appropriate for actuator materials because of high piezoelectric constant and electromechanical coupling factor.

Improved Physical Properties of Ni-doped $BiFeO_3$ Ceramic

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.250-250
    • /
    • 2012
  • Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Fe_3O_4$ and NiO powders were mixed with the stoichiometric proportions, and calcined at $450^{\circ}C$ for 24 h to produce $BiFe_{1-x}Ni_xO_3$. Then, the samples were directly put into the oven, which was heated up to $800^{\circ}C$ and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-{\mu}m$ diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. $BiFe_{0.95}Ni_{0.05}O_3$ exhibits the rhombohedral perovskite structure R3c, similar to $BiFeO_3$. The lattice constant of $BiFe_{0.95}Ni_{0.05}O_3$ is smaller than of $BiFeO_3$ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of $BiFe_{0.95}Ni_{0.05}O_3$ exhibits a clear hysteresis loop at 300 K. The magnetic properties of $BiFe_{0.95}Ni_{0.05}O_3$ were improved at room temperature because of the existence of structurally compressive stress.

  • PDF

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo;Lee, Young Bae;Kwon, Woo Hyun;Kang, Jeoung Yun;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.308-314
    • /
    • 2016
  • Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.

The Variation of Permeability and$Q_{max}$ Frequency with Processing Parameters in NiCuZn Ferrites (제조 공정 Parameter에 따른 NiCuZn Ferrite의 투자율과 $Q_{max}$ 주파수 변화)

  • 신재영;박지호;박진채;한종수;송병무
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 1997
  • Composition and process conditions for low temperature sintered NiCuZn ferrites were investigated, so as to fabricate multilayered chip inductor. The$Fe_2O_3$ deficiency for low temperature sintering was decreased with NiO contents of NiCuZn ferrites. The permeability of NiCuZn ferrites can be controlled in the range of 12~562 with the variation of NiO and $Co_3O_4$ contents. The $Q_{max} $ frequency of NiCuZn ferrites was decreased from 50 MHz to 3 MHz linearly with permeability increase from 60 to 560. The relation between the $Q_{max}$ frequency(Y) and permeability(X) of NiCuZn ferrites was expressed with the following empirical equation, logY=4.2-1.4logX.

  • PDF

Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動))

  • Ahn, Ji-Whan;Um, Nam-Il;Cho, Kye-Hong;Oh, Myung-Hwan;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Han, Choon;Kim, Byong-Gon
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Although the ferrous material was separated by the magnetic separation before the incineration process, the municipal solid waste incineration bottom ash generated during incinerator in metropolitan area consists of many iron products which account for about $3{\sim}11%$ as well as ceramics and glasses. The formation of $NiFe_2O_4$ and $FeCr_2O_4$ with a $Fe_3O_4-Fe_2O_3$ (similar to pure Fe) on the surface of iron product was found during air-annealing in the incinerator at $1000^{\circ}C$, because Ni and Cr has a chemical attraction about iron is using to coat with Ni and Cr metals for poish or to prevent corrosion. Therefore, Fe-Ni Cr oxide can be formed on durface of the iron product and it can be separated from bottom ash through the magnetic separation. So, in this study, the separation ratio of heavy metals as magnetic separation and mineralogical formation of Fe-ion(heavy metal) in ferrous metals corroded were investigated. As the result, the separation ratio of Ni and Cr based on particle sizes accounted for about $45{\sim}50%$, and Cu and Pb accounted for below 20%. Also, the leaching concentration of Ni and Cr in bottom ash separated by magnetic separation was lower than that in fresh bottom ash.

The effect of $Co_{3}O_{4}$ substitution on properties of Ni-Zn Ferrite (Ni-Zn 페라이트 물성의 $Co_{3}O_{4}$ 치환효과)

  • An, Yong-Woon;Kim, Jong-Ryung;Oh, Young-Woo;Kim, Hyun-Sik;Lee, Hae-Yun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.92-95
    • /
    • 2003
  • 전력선 통신용 LC 공진필터에 사용되는 Ni-Zn 페라이트를 제조하기 위해 $Ni_{0.8}Zn_{0.2}Fe_{2}O_{4}$를 기본조성으로 첨가제 $Bi_{2}O_{3}$, CaO와 x (co mol 비)를 변화시켜 전자기적 특성을 조사하였다. $Bi_{2}O_{3}$ CaO가 첨가됨으로써 균일한 입자성장과 입계에 고저항층이 형성되어 주파수 손실이 감소하였으며, $Ni_{0.8-x}Zn_{0.2}Co_{x}Fe_{2}O_{\delta}$의 기본조성에 Co의 함량을 증가시키면 x = 0.05에서 투자율 75, 공진주파수 20MHz의 특성을 나타내고 결정 입자 크기와 같은 구조적 특성에는 영향을 거의 미치지 않지만 전자기적 특성에는 영향을 미친다. 또한, $Ni_{0.75}Zn_{0.2}Co_{0.05}Fe_{2}O_{4.017}$ 조성의 페라이트 코어의 발열량은 큐리온도 이하에서 일어난다.

  • PDF

Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 Nanocomposite Ferrite (BaFe12O19/Ni0.5Zn0.5Fe2O4 나노복합체 Ferrite의 Exchange-coupling 상호 작용과 자기 특성)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.81-85
    • /
    • 2014
  • Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite ferrite were prepared by sol-gel combustion method. Nanocomposite was calcined at temperature range of $600{\sim}900^{\circ}C$ for 1 h. According to the diffraction patterns, hard/soft nanocomposite was indicated to the coexistence of the magnetoplumbite structural $BaFe_{12}O_{19}$ and spinel $Ni_{0.5}Zn_{0.5}Fe_2O_4$ and agree with the standard data (JCPDS 10-0325). The particle size of nanocomposite turn out to be less than 90 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that for the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite. $(BH)_{max}$ is increased, generally.

Microstructure and Mechanical Properties of Al2O3/Fe-Ni Nanocomposite Prepared by Rapid Sintering (급속소결에 의해 제조된 Al2O3/Fe-Ni 나노복합재료의 미세조직 및 기계적 특성)

  • Lee, Young-In;Lee, Kun-Jae;Jang, Dae-Hwan;Yang, Jae-Kyo;Cho, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense $Al_2O_3$ reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized $Al_2O_3$/Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and $Fe_2O_3$. Dense $Al_2O_3$/Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of $2000^{\circ}C/min$. Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the $Al_2O_3$/Fe-Ni nanocomposite.

Fabrication and Electrical Properties of Ni-Mn-Co-Fe Oxide Thick Film NTC Thermistors (Ni-Mn-Co-Fe 산화물 후막 NTC 서미스터의 제조 및 전기적 특성)

  • Park, Kyeong-Soon;Bang, Dae-Young;Yun, Sung-Jin;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.912-918
    • /
    • 2002
  • Ni-Mn-Co-Fe oxide thick films were coated on an alumina substrate by screening printing technique. The microstructure and electrical properties of the thick films, as a function of composition and sintering temperature, were investigated. The components of the NTC thick films sintered at 1150${\circ}C$ were distributed homogeneously. On the other hand, in the case of the NTC thick films sintered at 1200 and 1250${\circ}C$, Co element was distributed homogeneously, but Ni, Mn and Fe elements were distributed heterogeneously, resulting in the formation of Ni rich and Mn-Fe rich regions. All the thick film NTC thermistors prepared showed a linear relationship between log resistance (log R) and the reciprocal of absolute temperature (1/T), indicative of NTC characteristics. At a given NiO and $Mn_3O_4$ content, the resistance, B constant and activation energy of $(Ni_{1.0}Mn_{1.0}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) and $(Ni_{0.75}Mn_{1.25}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) thermistors increased with increasing $Fe_2O_3$ content.