• Title/Summary/Keyword: $NbSe_2$

Search Result 38, Processing Time 0.026 seconds

Josephson effect of the superconducting van der Waals junction

  • Park, Sungyu;Kwon, Chang Il;Kim, Jun Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.6-9
    • /
    • 2021
  • Heterostructures fabricated by various combinations of van der Waals (vdW) materials enable us to investigate disorder-free physical properties and realize novel functional devices. Superconducting vdW junctions have attracted a lot of attention because of its simple structure without a barrier layer. In superconducting vdW junction, without extra fabrication effort, a natural barrier can be formed, whose character is sensitive to distance and angle of lattice between two superconducting vdW materials. Using high-quality single crystals and the dry transfer technique, we fabricated the vertically stacked NbSe2/NbSe2 and FeSe/FeSe vdW junctions and investigated their Josephson junction properties. We found that in the FeSe junctions, Josephson coupling is extremely sensitive to the fabrication conditions, in contrast to the NbSe2 junctions. We attributed this distinct character of the FeSe junctions to surface instability and small Fermi surface of FeSe.

계산과학을 통한 MoSe2 물분해 광촉매 성질 연구

  • Gang, Seong-U
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.273-276
    • /
    • 2016
  • 최근 single-layer $MoSe_2$와 같은 2차원의 TMD 화합물들이 물분해 광촉매로서 각광받고 있다. TMD 화합물 중 single-layer $MoSe_2$는 수소 발생 반응을 일으킬 수 있으나 산소 발생 반응은 일으킬 수 없어 산화 반응을 진행시킬 추가적인 전극이 필요하다. 이 연구에서는 strain과 doping을 통해 valence band를 아래로 이동시켜 $MoSe_2$를 더 좋은 물분해 광촉매로 변화시키는 방법을 모색하였다. 먼저 Armchair, zigzag, biaxial isotropic, z-axis direction으로 strain을 걸어줄 때 전자구조의 변화를 관찰하였다. z-axis 방향으로 -2.5% strain을 걸어주었을 때 VBM이 0.07eV만큼 감소하였다. 또한 Mo를 Nb로 치환하고 Se를 P, As로 치환한 다음 전자구조를 관찰하였다. Nb와 doping의 경우 VBM이 감소함을 확인하였으며 As doping의 경우 산화반응이 일어날 수 있고 산화력과 환원력이 비슷해짐을 알아내었다. 또한 산화반응과 환원반응이 일어나는 위치가 분리됨을 확인하였다.

  • PDF

Synthesis and Characterization of $Ta_2Ni_3Se_8$

  • 동용관;도정환;윤호섭;이영주;신희균;류광경
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.870-873
    • /
    • 1995
  • A new ternary transition-metal selenide, Ta2Ni3Se8 has been synthesized from a eutectic halide flux. The structure of this phase has been characterized by single crystal X-ray diffraction techniques. The compound crystallizes in the orthorhombic system (D2h9-Pbam, a= 14.788(4) Å, b= 10.467(3) Å, c=3.4563(8) Å) with two formula units in the unit cell. This compound adopts the Nb2Pd3Se8 structure type. Hence, there are two chains of edge-sharing selenium trigonal prisms centered by tantalum atoms and these chains are interconnected through two kinds of nickel atoms. Nickel occupies both square planar and square pyramidal sites as does palladium in Nb2Pd3Se8. Electrical conductivity measurements indicate that this material is semiconducting.

Characterization of $Nb/Al-Al_2O_3/Nb$ Josephson junction arrays fabricated With and Without cooling substrate (기판 냉각과 비냉각으로 제작된 $Nb/Al-Al_2O_3/Nb$ 조셉슨 접합 어레이의 특성)

  • Hong, Hyun-Kwon;Kim, Kyu-Tae;Park, Se-Il;Lee, Kie-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1402-1404
    • /
    • 2001
  • Josephson junction arrays of the type $Nb/Al-Al_2O_3/Nb$ were prepared by DC magnetron sputtering. The tunnel barrier was formed by in-situ thermal oxidation. Individual junctions were defined using selective niobium etching process(SNEP). The characteristic curves of Josephson junction arrays fabricated with and without cooling the substrate were represented. The junctions deposited without cooling showed poor characteristics(high leakage current, low gap voltage), and a high quality Josephson junction array of 2,000 junctions with high hysteresis was obtained with cooling and when operated at 74.6 GHz, it generated stable quantized voltage steps up to 2.2 V.

  • PDF

Fabrication of All-Nb Josephson Junction Array Using the Self-Aligning and Reactive ion Etching Technique (Self-Aligning 기술과 반응성 이온 식각 기술로 제작된 Nb 조셉슨 접합 어레이의 특성)

  • Hong, Hyun-Kwon;Kim, Kyu-Tea;Park, Se-Il;Lee, Kie-Young
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • Josephson junction arrays were fabricated by DC magnetron sputtering, self-aligning and reactive ion etching technique. The Al native oxide, formed by thermal oxidation, was used as the tunneling barrier of Nb/$Al-A1_2$$O_3$Nb trilayer. The arrays have 2,000 Josephson junctions with the area of $14\mu\textrm{m}$ $\times$ $46\mu\textrm{m}$. The gap voltages were in the range of 2.5 ~2.6 mV and the spread of critical current was $\pm$11~14%. When operated at 70~94 ㎓, the arrays generated zero-crossing steps up to 2.1~2.4 V. To improve transmission of microwave power and prevent diffusion of oxygen into Nb ground-plane while depositing $SiO_2$dielectric, we applied a plasma nitridation process to the Nb ground-plane. The microwave power was well propagated in Josephson junction arrays with nitridation. The difference in microwave transmission 7an be interpreted by the surface impedance change depending on nitridation.

  • PDF

Solvothermal Synthesis and Photocatalytic Property of SnNb2O6

  • Seo, Se-Won;Lee, Chan-U;Seong, Won-Mo;Heo, Se-Yun;Kim, Sang-Hyeon;Lee, Myeong-Hwan;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.441-442
    • /
    • 2012
  • SnNb2O6 nanoplates were prepared by a solvothermal synthesis with water and ethanol mixed solvent. For improvement of their properties, as-prepared SnNb2O6 nanoplates also were calcined. The prepared powder was characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electron microscope (TEM), UV-vis spectroscopy, Raman spectrometer, Brunauer-Emmett-Teller (BET). The calcined nanoplates have a smaller surface area than the as-prepared nanoplates have. Nevertheless, in the case of the optical absorption properties, the calcined nanoplates could absorb more photon energy, due to their smaller band gaps. The Raman analysis revealed that the Nb-O bond length in the calcined nanoplates was longer than that in the as-prepared nanoplate. The higher optical absorption capability of the calcined nanoplates was attributed to the local structure variation within them. Furthermore the high crystallinity of the calcined nanoplates is effective in improving the generation of charge carriers. So, It was found that the calcined nanoplates exhibited superior photocatalytic activity for the evolution of H2 from an aqueous methanol solution than the as-prepared nanoplates under UV and visible irradiation. Therefore, the enhanced photocatalytic activity of the calcined nanoplate powder for H2 evolution was mainly attributed to its high crystallinity and improved optical absorption property resulting from the variation of the crystal structure.

  • PDF

An Efficient Inter-Cell Interference Mitigation Scheme for Proximity Service in Cellular Networks (셀룰러 망에서 Proximity Service를 위한 효율적인 셀 간 간섭 완화 방안)

  • Kim, Cha-Ju;Min, Sang-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.100-113
    • /
    • 2018
  • The Proximity Service, which is one of the most popular network capacity improvement methods, uses the frequency reuse in order to increase the frequency efficiency. As a result, inter-cell interference between cellular and proximity service users occurs at a cell edge. In this paper, we proposed a mitigation scheme for inter-cell interference, where we suggested a new function of and eNB with ProSe function exchanging information about ProSe parameters and ProSe user equipment with neighboring cells via the X2 interface. As the first step, the resource which did not cause the inter-cell interference problem were pre-allocated through the frequency sensing in the ProSe direct discovery. As the next step, the inter-cell interference problem was solved by reallocating appropriate resources based on the ProSe application code, the ProSe application QoS, the ProSe application ID and validity timer in ProSe direct communication.

Strain에 의한 monolayer와 bulk MX2(M = Zr, Nb, Mo; X = S, Se, Te)의 band structure 특징 분석

  • Mun, Chan-Mi;Seol, Seo-Eun;Cho, Eunsoo
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.441-447
    • /
    • 2017
  • 본 논문에서는 다양한 원소 조합을 통한 다양한 특성과 2D 구조의 형성이 가능한 물질로서 최근 많은 응용에 활용되고 있는 TMD물질에 대하여 strain 엔지니어링 방법을 탐색하고자 하였다. 에디슨 나노물리의 LCAO 기반 DFT 전자구조계산 SW를 이용해 4, 5, 6족의 TMD물질($MX_2$, M = Zr, Nb, Mo; X = S, Se, Te)의 monolayer, bulk 상태에 strain을 가했을 때 전자 구조의 변화를 계산하였다. Band gap 크기, 전자의 effective mass의 변화, direct-indirect gap transition 등을 전이금속의 종류에 따라 분류하여 분석할 수 있었다.

  • PDF