• Title/Summary/Keyword: $Na_2O$농도

Search Result 587, Processing Time 0.023 seconds

Effects of Na2S, NaCl, and H2O2 Concentrations on Corrosion of Aluminum (AA1100의 부식에 미치는 Na2S, NaCl, H2O2 농도의 영향)

  • Lee, Ju Hee;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.312-317
    • /
    • 2019
  • The objective of this study was to investigate the corrosion behavior of aluminum (AA1100) in a mixed solution of 0 ~ 0.1 g/L Na2S + 0.3 ~ 3 g/L NaCl + 0 ~ 10 mL/L H2O2. Potentiodynamic polarization tests were performed. Effects of solution compositions on corrosion potential, corrosion rate, and pitting potential of aluminum were statistically analyzed with a regression model. Results suggested that localized corrosion susceptibility of aluminum was increased in the solution with increasing concentration of NaCl because the pitting potential was lowered linearly with increasing NaCl concentration. On the contrary, H2O2 mitigated the galvanic corrosion of aluminum by increasing the corrosion potential. It also mitigated localized corrosion by increasing the pitting potential of aluminum. Na2S did not exert a noticeable effect on the corrosion of aluminum. These effects of different chemical species at various concentrations were independent of each other. Synergy or offset effect was not observed.

Study of Settling Properties of Cohesive Sediments (점착성 유사의 침강특성에 관한 연구)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2017
  • This paper is to understand the settling properties of cohesive sediments under effects of ions in turbulent flow. The experiments were conducted using a miniature annular flume(mini flume) with a free water surface. Silica was used as sediment of experiment. The suspended concentrations were measured by using a CCD-Camera. Settling of silica($SiO_2$) was allowed to occur under various shear stresses in a concentration of 7g/L. At condition of pH 4.2 and high NaCl concentration, the floc size D of silica was larger than D at condition of pH6.8 with the bed shear stress increasing. The settling velocity $W_s$ of silica was higher at condition of 10g NaCl/L than $W_s$ at condition of pH4.2. Comparison of measured concentration-time curves and concentration-time curves calculated by this study showed similar tendency in flow under effects of ions.

Optimization of Electrolytic Oxidant OCl- Production for Malodorous VOCs Removal (악취성 VOCs 제거를 위한 전해 산화제 OCl-의 생산 최적화)

  • Yang, Woo Young;Lee, Tae Ho;Ryu, Hee Wook
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.152-159
    • /
    • 2021
  • Volatile organic compounds (VOCs) occur in indoor and outdoor industrial and urban areas and cause environmental problems. Malodorous VOCs, along with aesthetic discomfort, can have a serious effect on the human body. Compared with the existing method of reducing malodorous VOCs, a wet scrubbing method using an electrolytic oxidant has the advantage of reducing pollutants and regenerating oxidants. This study investigated the optimal conditions for producing OCl-, a chlorine-oxidant. Experiments were conducted by changing the type of anode and cathode electrode, the type of electrolyte, the concentration of electrolytes, and the current density. With Ti/IrO2 as the anode electrode and Ti as the cathode electrode, OClproduction was highest and most stable. Although OCl- production was similar with the use of KCl or NaCl, NaCl is preferable because it is cheap and easy to obtain. The effect of NaCl concentration and current density was examined, and the OCl- production rate and concentration were highest at 0.75 M NaCl and 0.03 A cm-2. However, considering the cost of electric power, OCl- production under the conditions of 1.00 M NaCl and 0.01 A cm-2 was most effective among the conditions examined. It is desirable to produce OCl- by adjusting the current density in accordance with the concentration and characteristics of pollutants.

Effects of Liming and Nitrogen Sources on the Yield and Quality of Burley Tobacco II. Effects of Chemical Constituents of tobacco leaves (석회의 질소원이 버어리종 담배의 수량과 품질에 미치는 영향 II. 잎담배의 화학성분에 미치는 영향)

  • 김상범;한철수;김용규
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.4
    • /
    • pp.379-385
    • /
    • 1987
  • A field experiment was conducted to find out the effects of liming (soil pH) and sources of N on the chemical constituents of soil and leaf lamina of burley tobacco. Treatments consisted of liming (nonliming, liming to soil pH 5.5 and 6.5) as the main plot and N sources[compound fertilizer of containing 3.9% $NH_4-N$ and 6.1% $NH_2-N,\;NaNO_3,\;(NH_2)_2CO\;and\;(NH_4)_2SO_4$]as the sub-plot. The soil pH was high in $NaNO_2$ plot, while low in $(NH_4)_2SO_4$. But the differences of Ca concentration in top soil among N sources were not detected. The $NO_3-N$ concentration in top soil was high in high limed and $NaNO_3$ plot. The $NO_3-N$ content of leaf (lamina) at 75 days after transplanting was high in $NaNO_3$ plot and CaO con-tent of leaf at 45 days after transplanting was high in high limed plot. But neither liming nor N source had effect on the contents of total nitrogen, $P_2-O_{5}\;and\;K_2O$ of leaf during growing season. There was no significant differences in total alkaloid and total nitrogen contents of cured leaf (lamina) to liming and N source. But when the source of N was $NaNO_3$, the content of total alkaloid was increased by adding lime. When the source of N was $(NH_4$)_2SO_4$, the content of $K_2O$ in cured leaf was high while CaO was low. But neither liming nor N source had effect on the contents of $P_2-O_{5}$ and MgO in cured leaf.

  • PDF

The Study on the CEC Increase and Granulation of Natural Zeolite -The Effect of NaOH Concentration and Na2O/Al2O3 Ratio (천연(天然) Zeolite의 CEC 증가(增加)와 입단화(粒團化)에 관(關)한 연구(硏究) -1. NaOH농도(濃度)와 조반비(曺礬比)(Na2O/Al2O3)의 영향(影響))

  • Choi, Jyung;Hur, Nam-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.67-71
    • /
    • 1993
  • This study was carried out to develop the soil conditioner and/or the absorbent of high CEC with the natural zeolite poeder whose price was very low. The $SiO_2/Al_2O_3$ ratio & CEC of the natural zeolite were 6.78 and 67.5me/100g respectively. The CEC of the post-reaction product which was treated with 3N-NaOH and $Na_2O/Al_2O_3$ ratio. 9.5 for 8hours was about 200me/100g, which was the highest value than any other treatments. The dominant clay minerals were clinoptilolite, mordenite and smectite in natural zeolite, while phillipsite in the post-reaction product.

  • PDF

Reaction Characteristics of Geopolymer Paste Incorporating Fly-ash and GGBS (플라이애쉬와 고로슬래그 미분말을 혼입한 지오폴리머 페이스트의 반응특성 분석)

  • Shin, Ki-Su;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.321-330
    • /
    • 2020
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. In previous studies, it has been found that the addition of LF to reduce the cementitious paste volume would substantially increase the compressive strength, and reduce the heat generation. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

Radical Polymerization of Methyl Methacrylate with Tricaprylmethylammonium Chloride (Tricaprylmethylammonium Chloride에 의한 Methyl Methacrylate의 라디칼 중합)

  • Park, Sang-Wook;Moon, Jin-Bok;Ha, Yoo-Su;Kim, Jong-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.300-307
    • /
    • 1993
  • The phase-transfer polymerization of methyl methacrylate with tricaprylmethylammonium chloride-$Na_2S_2O_4-CCl_4$ initiator system was investigated in an aqueous-organic two-phase system. The observed rates of polymerization were compared with those obtained from the polymerization mechanism proposed with a cyclic phase-transfer initiation step. The rate of polymerization was found to be proportional to the concentration of $Q^+$ and square root of ${S_2O_4}^{-2}$ in the aqueous solution and the feed quantity of $CCl_4$ and MMA.

  • PDF

Formation Behavior and Properties of PEO Films on AZ91 Mg Alloy in 0.1 M NaOH + 0.05 M NaF Solution Containing Various Na2SiO3 Concentrations (AZ91 마그네슘 합금의 플라즈마 전해산화 피막 형성 및 물성에 미치는 0.1 M NaOH + 0.05 M NaF 용액 중 Na2SiO3 농도의 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.59-66
    • /
    • 2020
  • Effects of Na2SiO3 concentration added into 0.1 M NaOH + 0.05 M NaF solution on the formation behavior and properties of PEO films on AZ91 Mg alloy were investigated under 1200 Hz of alternating current (AC) by voltage-time curves, in-situ observation of arc generation behavior and measurements of film thickness, surface roughness and micro vickers hardness. In the absence of Na2SiO3 in the 0.1 M NaOH + 0.05 M NaF solution, about 4 ㎛ thick PEO film was formed within 1 min and then PEO film did not grow but white spots were formed by local burning. Addition of Na2SiO3 up to 0.2 M caused more increased formation voltage and growth of PEO film with uniform generation of arcs. Addition of Na2SiO3 from 0.2 M to 0.4 M showed nearly the same voltage-time behavior and uniform arc generation. Addition of Na2SiO3 more than 0.5 M resulted in a decrease of formation voltage and non-uniform arc generation due to local burning. PEO film growth rate increased with increasing added Na2SiO3 concentration but maximum PEO film thickness was limited by local burning if added Na2SiO3 concentration is higher than 0.5 M. Surface roughness of PEO film increased with increasing added Na2SiO3 concentration and appeared to be proportional to the PEO film thickness. PEO film hardness increased with increasing added Na2SiO3 concentration and reached a steady-state value of about 930 HV at more than 0.5 M of added Na2SiO3 concentration.

Enhancement of in vivo Radiosensitization by Combination with Pentoxifylline and Nicotinamide (Pentoxifylline과 Nicotinamide의 병용에 의한 생체내 방사선 감수성 증강 효과)

  • Lee Intae;Cho Moon-June
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 1991
  • Pentoxifylline (PENTO) has been known to improve RBC fluidity, and thus improve the flux of RBC through narrow capillaries. Additionally, PENTO also decreases the $O_2$ affinity of hemoglobin by increasing 2,3-DPG levels, thereby increasing the $O_2$ release from RBC. Nicotinamide (NA) has been reported to decrease the number of acutely hypoxic cells in tumors by temporarily increasing tumor blood flow. Therefore, the purpose of this study was to examine whether the combination of PENTO and NA (PENTO+NA) would reduce the radioresistance of the Fsall murine fibrosarcoma by oxygenating the hypoxic cells. We obsewed a significantly enhanced radiation-induced growth delay of the FSaII tumors by PENTO+NA. Thus the enhancement ratio was between 2.5 and 2.8 in growth delay assay. The $TCD_{50}$ of control tumors was about 57 Gy, but that of PENTO+NA treated tumors was about 32Gy. Thus $TCD_{50}$ was modified by a factor of 1.8. We also observed that PENTO+NA exerted no effect on the radiation-induced skin damage after the legs without bearing tumors were exposed to X-irradiation. In order to clarify radiosensitizing effects of PENTO+ NA, changes in tumor blood flow and intratumor pOf were measured using laser Doppler flowmetry and $O_2$ microelectrode methods. The tumor blood flow significantly increased at 10 min. after injection of PENTO+ NA. Furthermore, we also found that PENTO+ NA significantly increased intratumor $pO_2$ from 8 to 19 mmHg. We concluded that PENTO+MA was far more effective than NA alone or PENTO alone. The increase in the response of tumors in vivo to X-irradiation appeared to be due mainly to an increase in the tumor oxygenation. Further studies using various concentrations of PENTO alone and in combination with NA to obtain better sequencing and maximal radiosensitization are warranted.

  • PDF

SOx Sensor Using NASICON Solid Electrolyte (NASICON 고체 전해질을 사용한 SOx 가스 감지센서)

  • Choi, Soon-Don;Lee, Kwang-Beum
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.25-34
    • /
    • 1996
  • A SOx sensor using NASICON electrolyte was developed for monitoring of air pollution. The following galvanic cell with $Na_{2}SiO_{3}(Pt)$ reference electrode was assembled : Pt | $Na_{2}SiO_{3}$ | NASICON | $Na_{2}SO_{4}$ | Pt, $SO_{2}$, air $Na_{2}SO_{4}$ was used as an indicator electrode to protect NASICON electrolytes from chemical reaction with $SO_{2}$. The EMFs were measured after injecting $SO_{2}$ in the initial concentrations range of $5{\sim}95ppm$ at $400{\sim}550^{\circ}C$. The measured and calculated potentials were in good agreement above $500^{\circ}C$. However, the cells were unstable below $500^{\circ}C$, most likely due to incomplete attainment of chemical equilibrium. Response time was within 10 min. Based on the stability and response time of this cell, the NASICON solid electrolyte with $Na_{2}SiO_{3}(Pt)$ as the reference electrode and $Na_{2}SO_{4}$ (Pt)as the indicator electrode showed the possibility of a reliable, inexpensive commercial solid-state SOx sensor.

  • PDF