• 제목/요약/키워드: $Na^+$ uptake

검색결과 344건 처리시간 0.024초

Effects of High Glucose Levels on the Protein Kinase C Signal Transduction Pathway in Primary Cultured Renal Proximal Tubule Cells

  • Han, Ho-Jae;Kang, Ju-Won;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.257-267
    • /
    • 1996
  • Diabetes mellitus is associated with a wide range of pathophysiologic changes in the kidney. This study was designed to examine the mechanisms by which glucose modulates the expression of polarized membrane transport functions in primary cultured rabbit renal proximal tubule cells. Results are as follows: The rate of 30 minute $Rb^{+}$ uptake was significantly higher($137.76{\pm}5.40%$) in primary renal tubular cell cultures treated with 20 mM glucose than that of 5 mM glucose. Not the level of mRNA for the ${\alpha}$ subunit of Na, K-ATPase but that of ${\beta}$ subunit was elevated in primary cultures treated with high glucose. The initial rate of methyl-${\alpha}$-D-glucopyranoside(${\alpha}$-MG) uptake was significantly lower($71.91{\pm}3.02%$) in monolayers treated with 20 mM glucose than that of 5 mM glucose. There was a tendency of an increase in phlorizin binding site in cells treated with 5 mM glucose. However, 3-O-methyl-D-glucose(3-O-MG) uptake was not affected by glucose concentration in culture media. TPA inhibited $Rb^{+}$ uptake by $63.61{\pm}1.94\;and\;45.80{\pm}1.36%$ and ${\alpha}$-MG uptake by $48.54{\pm}3.69\;and\;41.87{\pm}6.70%$ in the cells treated with 5 and 20 mM glucose, respectively. Also TPA inhibited mRNA expression of Na/glucose cotransporter in cells grown in 5mM glucose medium. cAMP significantly stimulated ${\alpha}$-MG uptake by $114.65{\pm}5.70%$ in cells treated with 5mM glucose, while it did not affect ${\alpha}$-MG uptake in cell treated with 20 mM glucose. However, cAMP inhibited $Rb^{+}$ uptake by $76.69{\pm}4.16\;and\;66.87{\pm}2.41%$ in cells treated with 5 and 20 mM glucose, respectively. In conclusion, the activity of the renal proximal tubular Na,K-ATPase is elevated in high glucose concentration. In contrast, the activity of the Na/glucose cotransport system is inhibited. High glucose may in part affect the activity of the Na,K-ATPase and the Na/glucose cotransport system by controlling the protein kinase C and/or A signal transduction pathway in primary cultured renal proximal tubule cells.

  • PDF

NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화 (Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress)

  • 전현식
    • 생명과학회지
    • /
    • 제18권2호
    • /
    • pp.154-161
    • /
    • 2008
  • 염분에 대한 벼 유식물의 생리학적 광화학적 반응을 잎의 상대수분함량, 엽록소 형광 및 뿌리의 수분흡수를 통하여 연구하였으며, 벼 유식물이 농도가 다른 NaCl에 노출되었을 경우, 500 mM 이상의 농도와 4일, 5일간 스트레스를 준 처리구에서 식물체의 외관상 심각한 장해 징후가 나타났다. 500 mM에서는 5일간, 1,000 mM에서는 4일간 스트레스를 준 처리구와 NaCl를 처리하지 않은 대조구 간의 광합성 Fv/Fm에서 유의성이 있는 차이가 나타났으며, 그러나 뿌리 수분흡수에서는 Fv/Fm에 비해 스트레스 기간이 짧은 2일에서도 수분흡수의 차이가 나타나기 시작했다. NaCl에 노출된 식물에서 잎의 상대수분함량은 외부 염분의 농도가 증가하구 스트레스 기간이 길어짐에 따라 점차 감소하였다. 잎의 상대수분함량 결과에서 1,000 mM 농도로 1일간 처리된 경우(88%)와 비교했어 2일 이상 NaCl를 처리한 경우들(58-67%)에서 보다 낮은 수분함량을 보였다. NaCl 스트레스는 4일과 5일간 처리한 경우 etiolate된 벼 유식물의 광 유도 녹화과정에서 NaCl 농도가 증가함에 따라 직선적으로 심하게 억제하였다(각각의 $R^2$=0.812과 0.918). 염분 스트레스 기간과 NaCl농도가 증가되었을 때, NaCl의 농도가 같음에도 잎의 Fv/Fm보다는 뿌리의 수분흡수가 더 민감하게 반응하는 것으로 보아 잎에서의 장해보다는 뿌리에서의 반응이 먼저 일어나는 것으로 보인다.

Effect of KCl and NaCl on Uptake of Proline in Staphylococcus aureus

  • 배진현
    • 동아시아식생활학회지
    • /
    • 제5권1호
    • /
    • pp.101-107
    • /
    • 1995
  • Staphylococcus aureus, the most salt-tolerant food-borne pathogen, produces enterotoxins which may cause symptoms such as vomiting, diarrhea, nausea, and cramps. Since this bacterium has been able to grow at extremely high osmolarity its identity in foods with low water activity values such as salted or dried foods is of great concern. In this study, the growth of S. aureus at high osmolarity has been studied and the doubling time of S. aureus grown at TSB medium containing 15% NaCl has been found to be increased to 4∼5 hours. The stimulation of proline uptake after exposure of cells to high concentration of both extracellular KCl and sucrose was not increased. Stimulation of proline uptake at these environment only occured when 25mM NaCl was present I transport buffer. In additional experiments, the time required to reach mid-logarithmic phase in defined medium of high osmolarity found to be reduce by the presence of glycine betaine, proline, and choline.

  • PDF

Effect of Cadmium on Organic Acid Transport System in Renal Basolateral Membrane

  • Kim, Ghi-Chan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.279-288
    • /
    • 1996
  • Chronic exposure to cadmium impairs various renal tubular functions, including organic acid (anion) secretion. To investigate the mechanism of cadmium-induced alterations in the organic anion transport system, kinetics of p-aminohippurate (PAH) uptake was studied in renal cortical basolateral membrane vesicles (BLMV) isolated from cadmium-intoxicated rats (adult male Sprague-Dawley). Cadmium intoxication was induced by subcutaneous injections of $CdCl_{2}$ (2 mg Cd/kg per day) for 3 weeks. The renal plasma membrane vesicles were prepared by Percoll gradient centrifugation. The vesicular uptake of $^{14}C$-PAH was determined by rapid filtration technique using Millipore filter. Cadmium intoxication resulted in a marked attenuation of $Na^{+}$-dependent, ${\alpha}$-ketoglutarate (${\alpha}$KG)-driven PAH uptake with no changes in $Na^{+}$ and ${\alpha}$KG-independent transport component. Kinetic analysis indicated that Vmax, but not Km, of the $Na^{+}$-dependent, ${\alpha}$KG-driven component was reduced. A similar reduction of $Na^{+}$-dependent, ${\alpha}$KG-driven PAH uptake was observed in normal membrane vesicles directly exposed to inorganic cadmium in vitro, and this was accompanied by an inhibition of both $Na^{+}$-dependent ${\alpha}$KG uptake and ${\alpha}$KG-PAH exchange activity. These results indicate that during chronic exposure to cadmium, free cadmium ions liberated in the proximal tubular cytoplasm directly interact with the basolateral membrane and impair the active transport capacity for organic anions, most likely due to an inhibition of both $Na^{+}$-dicarboxylate cotransporter and dicarboxylate-organic anion antiporter activities.

  • PDF

가토신피질절편(家兎腎皮質切片)에서의 유기산이동(有機酸移動)에 관(關)한 연구(硏究) -특(特)히 전해질(電解質)의 영향(影響)에 대(對)하여- (Studies on the Transport of Organic Acids in the Rabbit Kindey Slice, with Special Reference to the Role of Various Electrolytes)

  • 정순동
    • The Korean Journal of Physiology
    • /
    • 제2권1호
    • /
    • pp.59-71
    • /
    • 1968
  • The uptake of phenolsulfonphthalein (PSP) and of paraaminohippuric acid (PAH) by cortical slices of the rabbit kidney was investigated while varying the composition of medium. The overall uptake of these substances displayed typical active transport characteristics and was significantly enhanced in presence of acetate. When the phosphate buffer was used the optimal pH was 7.4 for both substances. However, when the tris-buffer was used the optimal pH was 7.4 for PSP and 8.3 for PAH. Removal of $Na^+$ from the medium resulted in a significant reduction in the uptake. Similar results, though lesser in magnitude, were obtained when either $K^+\;or\;Ca^{++}$ was removed from the medium. However, there was no additive effect when $K^+\;and/or\;Ca^{++}$ were additionally removed from the $Na^+-free$ medium. The presence of ${NH_4}^+$ greatly reduced while $Li^+\;and\;Mg^{++}$ moderately reduced the uptake of both substances. However, choline had no effect. In substrate-leached slices, acetate greatly enhance the uptake of organic acids; but this action was not demonstrable in absence of $Na^+,\;K^+\;or\;Ca^{++}$.

  • PDF

NaCl 스트레스가 토마토, 고추, 가지의 생육, 광합성 속도 및 무기양분 흡수에 미치는 영향 (Effect of NaCl Stress on the Growth, Photosynthetic Rate and Mineral Uptake of Tomato, Red Pepper and Egg Plant in Pot Culture)

  • 강경희;권기범;최영하;김회태;이한철
    • 생물환경조절학회지
    • /
    • 제11권3호
    • /
    • pp.133-138
    • /
    • 2002
  • 본 실험은 가지과 작물의 염 스트레스에 대한 생장 특성 및 생리적 반응을 구명하기 위하여 수행되었다. 생육단계에 따라 NaCl을 농도별로 처리한 결과는 다음과 같았다. 초장, 생체중 등 생육은 유묘기 및 영양 생장기 모두 NaCl 농도가 높을수록 모든 작물에서 억제되었다 특히 토마토 및 가지에서는 NaCl 40mM 이상에서, 그리고 고추에서는 20mM 이상에서 작물의 생육이 크게 억제되었다. 수량은 토마토 및 가지에 서는 NaCl 20 mM 이상에서, 그리고 고추에서는 10 mM 이상에서 감소하였다. 이러한 수량감소는 낮은 농도에서는 착과수의 감소에, 그리고 농도가 높을수록 착과수의 감소와 더불어 평균과중의 감소의 영향이 컸다. 광합성 속도는 NaCl 농도가 높을수록 감소하는 경향이었으며. 고추가 가장 낮았고, 토마토, 가지 순으로 낮았다. 잎의 수분포텐셜과 기공 전도도도 광합성과 같은 경향을 나타냈다. 경엽의 무기 양분 함량에서는 질소, 인산, 칼슘, 마그네슘 및 칼륨 함량은 NaCl 농도가 증가할수록 감소하였으나 Na 및 Cl 함량은 증가하였다.

겨울철 개구리 (Rana temporaria)의 $Na^{+}$이온 대사 ($Na^{+}$ Metabolism in the Frog in the Winter Time)

  • 이중우;강두희
    • The Korean Journal of Physiology
    • /
    • 제7권1호
    • /
    • pp.41-47
    • /
    • 1973
  • $Na^{+}$ balance was studied in Rana temporaria, which hibenates in fresh water in the winter time. $Na^{+}$ uptake rate, skin $Na^{+}$ loss rate, urinary $Na^{+}$ loss rate and $Na^{+}-K^{+}$ adenosine triphosphatase(ATPase) were measured at two different temperatures $1{\sim}2^{\circ}C\;and\;20{\sim}24^{\circ}C$ respectively. The results obtained were as follows: 1. $Na^{+}$ uptake rates in the frog in an artificial Pond water (APW) were found to be $8.28{\pm}0.73\;and\;2.19{\pm}0.37\;{\mu}Eq/g/day\;at\;20{\sim}24^{\circ}C\;and\;1.0{\sim}2.5^{\circ}$ respectively. 2. $Na^{+}$ loss rate through the frog skin to APW were found to be $4.26{\pm}0.72\;and\;0.93{\pm}0.21\;{\mu}Eq/g/day$ at the same temperatures. 3. Mean rates of urinary $Na^{+}$ loss at $20{\sim}24^{\circ}C\;and\;3{\sim}4^{\circ}C$ were found to be $3.02{\pm}0.73\;and\;0.78{\pm}0.13\;{\mu}Eq/g/day$ respectively. 4. The activities of $Na^{+}-K^{+}$ activated ATPase of frog skin fragments were found to be $258{\pm}39.4\;and\;49.6{\pm}7.1\;{\mu}M\;Pi/g$ protein/hr at $24^{\circ}C\;and\;2^{\circ}C$ respectively. From the above results, it may be concluded that frogs can take up enough $Na^{+}$ through the skin from APW exceeding skin loss Plus urinary loss at $1{\sim}2^{\circ}C$. It is suggested that $Na^{+}$ transport across frog skin is closely related with $Na^+-K^+$ ATPase since $Q_{10}\;of\;Na^{+}$ uptake is much similar to that of the activities of $Na^{+}-K^{+}$ ATPase.

  • PDF

Effects of Extracellular Calcium and Starvation on Biochemical Indices of the Rat Hepatocytes

  • Kim, Ki-Sung
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.199-203
    • /
    • 1995
  • The focus of this study was to investigate that cellular parameters and glucose uptake might be altered by extracellular calcium and starvation. Addition of 1 mM $Ca^{++}$ to hepatocytes (equalling to the free calcium concentration of blood) significantly increased intracellular $Na^+$ and decreased $Na^+$ & LDH leakage. This pertains to the hepatocytes of control rats as well as those of rats fasted for 24 and 48. hr. These effects might be come from the membrane-stabilizing effects of calcium. But calcium had no effects on cell volumes, superoxide-formation and glucose uptake. Actually hepatocytes of starved rats showed changes in several cellular parameters. Starvation increased LDH leakage, glucose uptake and the total concentration of $Na^+$ and $Na^+$ whereas it markedly decreased cell volumes. Since total tonicity remained unchanged, intracellular $Na^+$ and $Na^+$ could contribute to a higher share of total osmolarity in starvation. Starvation increased the cytoplasmic pH because $R-NH^{3+}$ions and their corresponding counterions disappeared. This increase may be related to suppress the protonization of amino groups in proteins. Starvation decreased hepatic glycogen, a major compound that affects cytosolic volume of hepatocytes. The data indicate that starvation increases the glucose transport activity. The possible molecular basis will be discussed.

  • PDF

시스플라틴에 의한 $LLC-PK_1$의 알파-메틸글루코스 흡수 감소 기전 (Mechanism of Inhibition of ${\alpha}$-Methylglucose Uptake by Cisplatin in $LLC-PK_1$)

  • 서경원;김효정;정세영
    • 약학회지
    • /
    • 제40권6호
    • /
    • pp.705-712
    • /
    • 1996
  • We have previously shown that determination of glucose uptake using ${\alpha}$-methylglucose(${\alpha}$-MG) is very sensitive and rapid parameter for the assessment of loss of cellular fu nction in renal cell line($LLC-PK_1$). The present study was designed to elucidate the mechanism of inhibition of ${\alpha}$-MG uptake and the intracellular site of toxic action of cisplatin(CIS). $LLC-PK_1$ cells were exposed to various concentrations(5 ${\mu}$M-l00 ${\mu}$M) of CIS for 5 hrs or 24 hrs and ${\alpha}$-MG uptake was determined. Mitochondrial function was evaluated by measuring intracellular ATP content and MTT reduction. The activities of marker enzymes for the basolateral membrane(Na$^+$-K$^+$ ATPase) and brush border membrane (alkaline phosphatase: ALP) were also measured. CIS treatment significantly inhibited the ${\alpha}$-MG uptake in a time- and dose-dependent manner above 25 ${\mu}$M for 5 hrs. Intracellular ATP content and MTT reduction were affected by 24 hr-treatment of 50 ${\mu}$M CIS. The activities of Na$^+$-K$^+$ ATPase and ALP were significantly decreased at 10 ${\mu}$M and 5 ${\mu}$M of CIS for 24 hrs, respectively. The incubation with CIS for 5 hrs had no effects on the intracellular ATP content, MTT reduction and the activities of marker enzymes up to 100 ${\mu}$M. These results partly indicate that inhibition of ${\alpha}$-MG uptake by CIS may not be attributed to the disturbance of mitochondrial function or inhibition of the activity of Na$^+$-K$^+$ ATPase and can be resulted from direct effect of CIS on the Na$^+$/glucose cotransporter in brush border membrane. This study shows that additional mechanistic information, indicating the intracellular site of nephrotoxic action, can be gained by coupling the ${\alpha}$-MG uptake and ATP content or the activity of Na$^+$-K$^+$ ATPase.

  • PDF

Cloning of the Gene for Na$^{+}$/Serine-Threonine Symporter (sstT) from Haemophilus influenzae Rd and Characteristics of the Transporter

  • Kim, Young-Mog
    • Journal of Microbiology
    • /
    • 제41권3호
    • /
    • pp.202-206
    • /
    • 2003
  • A protein, exhibiting a high similarity to the major serine transporter of Escherichia coli, SstT, was found in Haemophilus influenzae Rd. A Na$\^$+/-stimulated serine transport activity was also detected in the cells. The gene (sstT) for the Na$\^$+//serine symporter from the chromosome of H. influenzae was cloned, and the properties of the transporter investigated. The serine transport activity was stimulated by Na$\^$+/. The uptake of Na$\^$+/ was elicited by the addition of serine or threonine into the cells, supporting the idea that these amino acids are transported by a mechanism of Na$\^$+//substrate symport. No uptake of H$\^$+/ was elicited by the influx of serine. The serine transport via the SstT of H. influenzae was inhibited by excess threonine, which was used as another substrate. The $K_{m}$ and the $V_{max}$ values for the serine transport were 2.5 ${\mu}$M and 14 nmol/min/mg protein, respectively.