• 제목/요약/키워드: $N_2O$분해

검색결과 728건 처리시간 0.032초

온실가스 아산화질소(N2O) 저감기술 및 CDM 사업의 현황과 전망 (Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide)

  • 장길상
    • 공업화학
    • /
    • 제19권1호
    • /
    • pp.17-26
    • /
    • 2008
  • 기후변화협약에 이은 교토의정서가 발효되면서 온실가스 저감은 세계적인 당면 문제가 되어 있는 가운데 청정개발체제(CDM) 및 공동이행(JI) 등을 통한 배출권 확보가 국가적인 경쟁이 되고 있다. 이산화탄소($CO_2$) 및 메탄가스($CH_4$)와 더불어 대표적인 온실가스의 하나인 $N_2O$는 온난화효과가 $CO_2$에 비해 310배에 이르며 120년의 분해기간이 소요될 만큼 대기 중에서 매우 안정하여 성층권에서 오존층을 파괴하는 물질로 알려져 있다. 또한 $N_2O$는 분해하기가 쉽지 않아 고온 열분해 시키는 방법 외에 $400^{\circ}C$ 이상에서 촉매에 의해 선택적으로 분해시키는 방법이 알려져 있으나 대개 NOx가 같이 존재하여 $N_2O$ 분해를 방해하는 역할을 한다. 본 보문은 국내외의 $N_2O$ 발생원에 대한 내역과 더불어 각종 온실가스 저감사업에 의한 배출권 거래현황과 탄소시장의 성장 및 $N_2O$ 저감사업의 위치, $N_2O$ 촉매 분해에 관한 기술개발의 현황과 방향, 그리고 CDM 사업으로서의 전망 등을 분석 집약하였다.

N2O 분해반응용 Co3O4 기반 촉매의 K첨가 효과 (K Addition Effect of Co3O4-based Catalyst for N2O Decomposition)

  • 황라현;박지혜;백정훈;임효빈;이광복
    • 청정기술
    • /
    • 제24권1호
    • /
    • pp.35-40
    • /
    • 2018
  • $N_2O$ 촉매 분해 반응을 위한 $Co_3O_4$ 촉매는 공침법을 이용하여 제조하였으며, 조촉매로서 Ce 및 Zr의 양을 (Ce 또는 Zr)/Co = 0.05의 몰비로 고정하여 제조하였다. 또한 K가 촉매에 미치는 영향을 조사하기 위해 1 wt%의 $K_2CO_3$를 함침하여 촉매를 제조하였다. 제조된 촉매의 특성은 BET, SEM, XRD, $H_2-TPR$, XPS를 통해 분석하였다. $Co_3O_4$ 촉매는 스피넬 결정상을 나타냈으며, 조촉매의 첨가는 입자 크기와 결정 크기를 감소시켜 비표면적을 증가시키는 것으로 나타났다. K의 도핑은 촉매 활성 물질인 Co의 활성 종인 $Co^{2+}$의 농도를 증가시켜 촉매 활성을 향상시키는 것으로 확인되었다. $N_2O$ 분해 반응 테스트는 $GHSV=45,000h^{-1}$, $250{\sim}375^{\circ}C$에서 수행되었으며 $Co_3O_4$ 촉매에 조촉매를 첨가하였을 때도 반응성이 증가하였지만, K를 함침하면 활성이 더욱 크게 증가하는 것으로 나타났다. K의 도핑이 활성 종인 $Co^{2+}$의 농도를 증가시키며, 환원온도를 낮춰 주어 활성에 큰 영향을 주는 것으로 확인하였다.

고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구 (A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas)

  • 이한민;윤재근;홍정구
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구 (Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene)

  • 조성권;안성용;김종학;윤호성;권세진
    • 한국추진공학회지
    • /
    • 제14권6호
    • /
    • pp.69-78
    • /
    • 2010
  • 고농도 과산화수소를 이용하는 1,200 N 급 이원추진제 로켓 엔진 개발을 위한 선행 연구의 일환으로 이원추진제 엔진 요소를 설계하고 실험적으로 연구하였다. 공급된 과산화수소의 분해 성능을 비교하기 위해, $MnO_2$와 Pb가 첨가된 $MnO_2$ 촉매들에 대한 실험을 하였다. 실험결과를 바탕으로, 촉매 반응기를 설계하였으며, 97.2%의 분해 효율을 얻었다. 별도의 점화원이 없이 자연점화를 이용하기 위해, 다양한 당량비에 대해 자연점화 실험을 수행하였다. 모든 실험조건에서 자연 점화를 확인하였으며, $C^*$ 효율은 90% 혹은 그 이상을 보였다. 추력측정 결과, 가장 높은 추력은 830 N을 보였으며, $C^*$ 효율과 $I_{sp}$ 효율을 같다고 가정했을 때, 진공 추력 1,035 N으로 계산되었다.

분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구 (Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene)

  • 조성권;안성용;김종학;윤호성;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.156-164
    • /
    • 2010
  • 고농도 과산화수소를 이용하는 1,200 N 급 이원추진제 로켓 엔진 개발을 위한 선행 연구의 일환으로 이원추진제 엔진 요소를 설계하고 실험적으로 연구하였다. 공급된 과산화수소의 분해 성능을 비교하기 위해, $MnO_2$와 Pb가 첨가된 $MnO_2$ 촉매들에 대한 실험을 하였다. 실험결과를 바탕으로, 촉매 반응기를 설계하였으며, 97.2%의 분해 효율을 얻었다. 별도의 점화원이 없이 자연점화를 이용하기 위해, 다양한 당량비에 대해 자연점화 실험을 수행하였다. 모든 실험조건에서 자연 점화를 확인하였으며, $C^*$ 효율은 90% 혹은 그 이상을 보였다. 추력측정 결과, 가장 높은 추력은 830 N을 보였으며, 94.1% 이론 비추력을 적용했을 경우, 진공 추력 1,035 N으로 계산되었다.

  • PDF

Cu-Y 제올라이트상의 NO분해반응에 대한 양자화학적 해석 (Quantum Chemical Calculation of NO Decomposition over Cu-Y Zeolite)

  • 김명철
    • 공업화학
    • /
    • 제7권2호
    • /
    • pp.321-325
    • /
    • 1996
  • $Cu^{n+}$ 교환된 Y형 제올라이트 상에서 진행되는 NO분해반응의 특성을 양자화학적 계산을 통해 해석하였다. 제올라이트내 양이온 자리를 나타내는 Cluster모델들에 대해 CNDO/2와 같은 이론적 계산을 수행하여 전체에너지, LUMO에너지 및 Wiberg결합차수값들을 얻었다. 각 모델들의 전체에너지와 결합차수값들을 통해 제올라이트 골격내 $Cu^{n+}$ 양이온 자리에서의 NO분해반응에 대한 반응기구를 고찰하였다. 제안된 분자모델들은 각기 다른 Si/Al비와 $Cu^+$$Cu^{2+}$ 교환된 양이온의 경우로 구분하여 고찰하였다. LUMO에너지의 계산을 통해 모델분자들의 L산성도를 해석하였다. NO분해반응의 메카니즘은 NO의 흡착, $N_2$$O_2$로의 분해, $N_2$$O_2$의 탈착의 단계가 연속적으로 진행될 가능성이 있었다. 양이온 자리에서 $Cu^{2+}$$Cu^+$ 보다 더 강한 L산성을 나타내었다.

  • PDF

Titanium n-Butoxide의 가수분해에 의한 $TiO_2$ 분말 합성과 반응 메커니즘 (Synthesis of $TiO_2$ Powders by the Hydrolysis of Titanium n-Butoxide and Reaction Mechanism)

  • 박진구;명중재;정용선;경진범;김호건
    • 대한화학회지
    • /
    • 제43권5호
    • /
    • pp.505-510
    • /
    • 1999
  • n-butanol 용매 내에서 titanium n-butoxide의 가수분해 반응에 의하여 $TiO_2$ 분말을 합성하였고, 가수분해 반응 메카니즘은 UV-Vis 분광법에 의하여 조사하였다. 가수분해 반응시 물의 농도를 과량으로 하여 반응이 유사일차반응으로 진행하도록 하였다. 이러한 농도 조건에서 얻어진 분말의 상(phase)을 XRD에 의하여 확인하였으며 반응속도는 Guggenheim method를 이용하여 계산하였다. 합성 결과 얻어진 분말은 생성 초기 비결정 상태에서 열처리 과정을 거치면서 rutile 구조로 상전이 하였다. 속도상수로부터 얻어진 물분자수(n-value)와 열역학적 파라미터로부터 titanium n-butoxide의 가수분해 반응은 Interchange-Associative(Ia)메카니즘으로 진행하는 것으로 추정되었다.

  • PDF

졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해 (Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide)

  • 명중재;박진구;정용선;경진범;김호건
    • 공업화학
    • /
    • 제8권5호
    • /
    • pp.777-783
    • /
    • 1997
  • n-propanol 용매내에서 titanium n-propoxide($Ti(O^nPr)_4$)의 가수분해반응에 의하여 $TiO_2$ 미분말을 합성하였고, 가수분해속도를 자외선 분광법에 의하여 측정하였다. 분말합성은 water/alkoxide의 농도비가 약 300정도에서 실시하였으며, 물농도, 반응온도, 반응시간 및 반응용액의 산 염기효과에 의한 합성조건을 조사하였다. 반응은 $Ti(O^nPr)_4$의 농도에 비하여 물농도를 과량으로 하여 유사일차반응으로 진행시켰고, 반응속도상수를 Guggenheim method로 계산하였다. 또한 물의 동위원소효과($D_2O$)를 측정하여 반응에 관여하는 물분자의 촉매성을 확인하였다. 실험결과 중성 및 염기성 용액 조건에서 $TiO_2$미분말이 합성되었고, 미세구조 관찰로부터 $TiO_2$입자는 직경 $0.4-0.7{\mu}m$ 정도의 구형입자로 확인되었으며, 물의 농도와 반응온도가 증가할수록, 반응시간이 감소할수록 입자크기는 작아지는 경향을 보였다. 물의 동위원소효과로부터, 물분자는 nucleophilic catalysis로 작용하고 있으며, 반응속도로부터 전이상태에 참여하는 n-value와 열역학적 파라미터를 계산한 결과, $Ti(O^nPr)_4$의 가수분해반응은 이분자 반응인 associative $S_N2$ mechanism으로 진행하는 것으로 추정되었다.

  • PDF

뫼스바우어 분광기법을 이용한 Fe-N 나노입자의 자기특성연구 (Study of Magnetic Property of Fe-N Nanoparticle Using Mössbauer Spectroscopy)

  • 오세진
    • 한국자기학회지
    • /
    • 제17권2호
    • /
    • pp.76-80
    • /
    • 2007
  • 화학기상응축공정법으로 세 가지 분해온도에서 제조된 나노 Fe-N 시료들을 뫼스바우어 분광기, XRD와 BET를 이용하여 자기적 특성의 변화를 연구하였다. 분해온도가 낮을수록 ${\gamma}'-Fe_4N$의 형성이 용이하였으며, 중간온도에서의 ${\epsilon}-Fe_{2.12}N$을 거쳐 높은 분해온도에서는 ${\gamma}-Fe$가 주로 형성되었다. 높은 분해온도에서는 Fe와 N이 서로 잘 결합되지 못하였는데, 이는 Fe와 N을 결합시키기 위해서는 분해온도를 낮게 하는 것이 바람직하다는 것을 의미한다.

Fe-TNU-9 제올라이트 상에서 아산화질소의 분해반응 속도론 (Kinetics of N2O Decomposition over Fe-TNU-9 Zeolite)

  • 박정현;전성희;위엔반과;신채호
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.453-458
    • /
    • 2009
  • Fe의 함량을 0.5~3.3 wt%의 범위에서 이온 교환하여 제조한 Fe-TNU-9 제올라이트 촉매상에서 $N_2O$ 농도를 2000~8500 ppm, 반응온도를 $300{\sim}550^{\circ}C$ 범위 내에서 $N_2O$ 직접분해반응을 수행하였다.제조된 촉매는 X-선 회절분석, 질소흡착, 주사전자현미경 등으로 특성분석을 수행하였다. 최적 Fe 함량은 2.7 wt%로 그 이상의 함량에 있어 Fe 함량은 $N_2O$ 직접분해반응에 큰 영향을 미치지 않았다. 이온교환 후에 TNU-9의 XRD 상으로는 안정된 상태를 유지하였지만 0.01 M Fe 용액 하에서 이온 교환한 3.1 wt% Fe-TNU-9 제올라이트는 H-TNU-9에 비해 최대 60%까지의 결정화도가 감소하였다. 이러한 결정화도의 감소는 비표면적 및 기공부피와 연관질 수 있지만 감소정도는 약 10% 정도로 결정화도 감소와 비교하면 영향은 크지 않았다. 멱차수법을 이용한$N_2O$ 분해반응에 있어$N_2O$ 부분 반응차수는 $420^{\circ}C$에서 0.69, $464^{\circ}C$에서 0.97차까지 변화하였다. 활성화 에너지는$N_2O$의 농도가 증가하면 같은 경향으로 증가하였고, 34~43 kcal/mol 범위 내에서 넓게 분포하였다.