• 제목/요약/키워드: $N_2/O_2$

검색결과 11,051건 처리시간 0.048초

Spatial and Temporal Distribution and Characteristics of Zooplankton Communities in the Southern Coast of Korea from Spring to Summer Period (봄과 여름철의 남해안 동물플랑크톤 시·공간적 분포와 군집 특성)

  • Moon, Seong Yong;Lee, Mi Hee;Jung, Kyung Mi;Kim, Heeyong;Jung, Jin Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제55권2호
    • /
    • pp.154-170
    • /
    • 2022
  • The zooplankton composition, abundance, community structure, and species diversity in the major commercial fishery species spawning grounds in the southern coast of Korea were investigated in this study. A total of 80 taxa were sampled, with the mean abundance range of 5,612-11,720 ind. m-3 and the mean biomass range of 41.6-1,086.8 mg m-3. The dominant species were Paracalanus copepodites, Paracalanus parvus s. l., Oithona copepodites, Paracalanus nauplii, Noctiluca scintillans, Oithona similis, and Ditrichocorycaeus affinis. The species diversity indices were highest in August, suggesting that diversity is influenced by neritic and oceanic warm-water species. A cluster analysis with non-metric multidimensional scaling (nMDS) revealed three groups of zooplankton communities. The April and May samples clustered into Group A, having the highest mean total zooplankton abundance and lowest species diversity, consisting mainly of temperate species located in the middle region of the southern coast of Korea. Cluster Group B was from the early summer season (June) and contained the highest species diversity with some oceanic and neritic zooplankton species. Cluster Group C from the summer season (July and August) mainly comprised P. parvus s. l. and O. similis. The redundancy analysis (RDA) indicated that abundance is positively correlated with salinity, and chlorophyll-a concentrations.

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

Effect of abutment types and resin cements on the esthetics of implant-supported restorations

  • Asena Ceken;Hamiyet Kilinc;Sedanur Turgut
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권3호
    • /
    • pp.114-125
    • /
    • 2023
  • PURPOSE. The aim of the study was to evaluate the optical properties of new generation (3Y-TZP) monolithic zirconia (MZ) with different abutment types and resin cement shades. MATERIALS AND METHODS. A1/LT MZ specimens were prepared (10 × 12 × 1 mm, N = 30) and divided into 3 groups according to cement shades as transparent (Tr), yellow (Y) and opaque (O). Abutment specimens were obtained from 4 different materials including zirconia (Group Z), hybrid (Group H), titanium (Group T) and anodized yellow titanium (Group AT). MZ and abutment specimens were then cemented. L*, a*, and b* parameters were obtained from MZ, MZ + abutment, and MZ + abutment + cement. ∆E001* (between MZ and MZ + abutment), ∆E002* (between MZ and MZ + abutment + cement) and ∆E003* (between MZ + abutment and MZ + abutment + cement) values were calculated. Statistical analyses included 2-way ANOVA, Bonferroni, and Paired Sample t-Tests (P < .05). RESULTS. Abutment types and resin cements had significant effect on L*, a*, b*, ∆E001*, ∆E002*, and ∆E003* values (P < .001). Without cementation, whereas zirconia abutment resulted in the least discoloration (∆E001* = 0.68), titanium abutment caused the most discoloration (∆E001* = 4.99). The least ∆E002* = 0.68 value was seen using zirconia abutment after cementation with yellow shaded cement. Opaque shaded cement caused the most color change (∆E003* = 5.24). Cement application increased the L* values in all groups. CONCLUSION. The least color change with/without cement was observed in crown configurations created with zirconia abutments. Zirconia and hybrid abutments produced significantly lower ∆E002* and ∆E003* values in combination with yellow shaded cement. The usage of opaque shaded cement in titanium/anodized titanium groups may enable the clinically unacceptable ∆E00* value to reach the acceptable level.

Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications (전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구)

  • Se-Hyun Kim;Jeong Min Lee;Daniel Kofi Azati;Min-Kyu Kim;Yujin Jung;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제37권4호
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.

AC and DC anodization on the electrochemical properties of SS304L: A comparison

  • Nur S. Azmi;Mohd N. Derman;Zuraidawani Che Daud
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.153-160
    • /
    • 2024
  • This study investigates the application of alternating current (AC) and direct current (DC) anodization techniques on stainless steel 304L (SS304L) in an ethylene glycol and ammonium fluoride (NH4F) electrolyte solution to produce a nano-porous oxide layer. With limited research on AC anodizing of stainless steel, this study focuses on comparing AC and DC anodization in terms of current density versus time response, phase analysis using X-ray diffraction (XRD), and corrosion rate determined by linear polarization. Both AC and DC anodization were performed for 60 minutes at 50 V in an electrolyte solution containing 0.5% NH4F and 3% H2O in ethylene glycol. The results show that AC anodization exhibited higher current density compared to DC anodization. XRD analysis revealed the presence of ferrite (α-Fe) and austenite (γ-Fe) phases in the as-received specimen, while both AC and DC anodized specimens exhibited only the γ-Fe phase. The corrosion rate of the AC-anodized specimen was measured at 0.00083 mm/year, lower than the corrosion rate of the DC-anodized specimen at 0.00197 mm/year. These findings indicate that AC anodization on stainless steel offers advantages in terms of higher current density, phase transformation, and lower corrosion rate compared to DC anodization. These results highlight the need for further investigation and exploration of AC anodization as a promising technique for enhancing the electrochemical properties of stainless steel.

In vitro Adipocyte Differentiation Inhibition and in vivo Effects on Lipid Metabolism in High-Fat Diet-Induced Obesity of Euphorbia humifusa

  • Sung-Gyu Lee;Hyun Kang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.387-398
    • /
    • 2024
  • Euphorbia humifusa Willd (Euphorbiaceae) is a functional raw material with various pharmacological activities. This study aimed to validate the inhibitory effect of Euphorbia humifusa extract (EHE) on adipocyte differentiation in vitro and in a high-fat-diet (HFD)-induced mouse model to evaluate the E.a humifusa as a novel anti-obesity and lipid metabolism enhancer agent. EHE effects on obesity and lipid metabolism were assessed in HFD-induced obese mice after 4-week treatments. Results were compared among four treatment groups (n = 7/group): low fat diet (LFD), high fat diet (HFD), and HFD-induced obese mice treated with either 100 or 200 mg/kg/day EHE (EHE100 and EHE200, respectively). EHE (50 to 200 ㎍/ml) and quercetin (50 ㎍/ml) significantly reduced 3T3-L1 preadipocyte differentiation (p < 0.001), in a concentration-dependent manner. EHE affected lipid metabolism, as evidenced by changes in serum lipid components. The HFD-EHE100 and HFD-EHE200 groups exhibited significantly (p < 0.05) reduced triglycerides (TG, 97.50 ± 6.56 and 82.50 ± 13.20 mg/dL, respectively) and low-density lipoprotein-cholesterol (LDL-c: 40.25 ± 4.99 and 41.25 ± 6.36 mg/dL, respectively) compared to the HFD group (TG: 129.25 ± 19.81 mg/dL; LDL-c: 51.75 ± 11.59 mg/dL). Haematoxylin and Eosin (H&E) and Oil red O staining showed that EHE markedly reduced lipid accumulation and inhibited lipogenesis in the liver. Interestingly, EHE significantly (p < 0.01) reduced the expression of adipogenic transcription factors in liver tissue. Our results indicated that EHE has the potential to be a therapeutic agent for addressing obesity and lipid metabolism.

Malacological Studies on Parafossarulus manchouricus(Gastropoda: Prosobranchia) in Korea (한국산(韓國産) 왜우렁(Parafossarulus manchouricus)의 패류학적(貝類學的) 연구(硏究))

  • Chung, Pyung-Rim
    • The Korean Journal of Malacology
    • /
    • 제1권1호
    • /
    • pp.24-50
    • /
    • 1985
  • Five different populations of Parafossarulus manchouricus (Chongpyung, Chinju and Kunsan, Korea; and Japan and Taiwan), a population of Bitbynia (Gabbia) misella (Gongju, Korea) and two different populations of Bithynta tentaculata (Michigan, U.S.A. and Bodensee, Germany) were compared in regard to eff-laying characteristics, morphology, chromosome cytology, natural infections of parasites and ecology of habitats. A satisfactory culture method was devised for laboratory rearing of the snails. Tropical fish food (Terra SML) and powdered green leaves (Ceralife) were used as the main food sources for the snails. Benthic diatoms such as Navicula and Gomphonema from the periphyton were also essential for satisfactory growth, especially for the baby snails. The aquaria were stabilized with small stones from a local stream. Young P. manchouricus snails grew to adult size in about 54 days after hatching. They laid eggs 150-156 days after hatching. The whole cycle (birth to egg-laying) took approximately 5 months. The three species of bithyniid snails are iteroparous and lay eggs once a year. There were no major morphological differences in the shells of genera or subgenera studied here. They did exhibit the following rather minor differences. The shell of Parafossarulus has spirally raised ridges, and its apex is usually eroded; the other two genera lack these characteristics. The shell of B. (Gabbia) misella is small, nor exceeding 7.5 mm in length, while the shells of the other two species are larger, being more than 10 mm in length. Scanning electron microscopy (SEM) of the protoconch of P. manchouricus reveals nearly smooth sculpture with small, low, spiral wrinkles. This sculpture is quite different from that of the Hydrobiidae, a family to which the bithyniids are frequently assigned. Scanning electron microscopy of the radulae of the three bithyniid species showed that their radular morphologies are very similar, but there are some small differences, which may be species-specific. There were some statistical differences in shell heights between the Korean and the other populations of P. manchouricus, and between this species and the other two bithyniids as well. The shell differences between the several populations of Korean P. manchouricus may be related to environment. Edtails of the chromosome cycle of these bithyniid snails are similar to those reported for other snails. No specific differences were observed in the chromosome cycle between the various species and populations of snails employed in this study. Reporred for the first time in molluscs are two darkly stained "nucleolar organizers" during pachyterne stages of meiosis. Two different chromosome numbers were observed in the three bithyniid species: n=17 in B. tentaculata and P. manchouricus, and n=18 in B. (G.) misella. no sex chromosomes or supernumerary chromosomes were seen. There were no morphological differences in karyotypes of three Korean strains of P. manchouricus. The infection rates of cercariae of Clonorchis sinensis in Chinju and Kunsan strains of P. manchouricus were 0.14% and 1.25%, respectively. However, Clonorchis cercariae were found in Chongpyung strain of P. manchouriceu and Gongju strain of B. (G.) misella. The habitats of P. manchouricus around Jinyang Lake were relatively clean without any heavy pollution of aquatic microorganisms and organic materials during the period of this study. The levels of dissolved oxygen (D.O.) and biochemical oxygen demand (B.O.D.) of the water specimens sampled from the study areas ranged from 6.0 to 9.6 ppm and from 0.4 to 1.6 ppm, respectively. Eight metalic constituents from the water samples were also assayed, and all metalic ions detercted were remarkably low below the legal criteria. However, calcium ion in the water samples from the habitats of P. manchouricus was considerably higher than others.

  • PDF

Effects of Addition of Eggshell to Sawdust Substrate on the Growth and Development of Winter Mushroom, Flammulina velutipes (계란껍질 첨가배지(添加培地)가 팽이버섯의 균사생장(菌絲生長)과 자실체(子實體)에 미치는 영향(影響))

  • Cheong, Jong-Chun;Kim, Gwang-Po;Kim, Han-Kyung;Kim, Young-Ho;Cha, Dong-Yeul;Chung, Bong-Koo
    • The Korean Journal of Mycology
    • /
    • 제23권3호통권74호
    • /
    • pp.226-231
    • /
    • 1995
  • Tile effects of addition of eggshell to sawdust substrate for the growth of F. velutipes were investigated. Eggshell used in this study contained 20.7% C, 0.81% N, 2530 ppm $P_2O_5$ and 44.37% Ca. The addition of eggshell resulted in the increase in bulk density and decrease of moisture content of the substrate. The addition of eggshell significantly increased the yield of the mushroom fruitbody. The addition rate of 15% (v/v), by 25% and at the rates of 5% and 10%, about 20%. Although the addition of eggshell to substrate did not improve the quality of mushroom, it increased the number of effective stipes as compared to control plot; approximately 13% more than in the control plot.

  • PDF

Analysis of research trends in methane emissions from rice paddies in Korea

  • Choi, Eun-Jung;Lee, Jae-Han;Jeong, Hyun-Cheol;Kim, Su-Hun;Lim, Ji-Sun;Lee, Dong-Kyu;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • 제44권4호
    • /
    • pp.463-476
    • /
    • 2017
  • Climate change is considered as the greatest threat to our future and descendants. The Korean government has set a target for 2030 to reduce emission of greenhouse gases (GHGs) by 37% from the business-as-usual levels which are projected to reach 851 million metric tons of $CO_2eq$ (Carbon dioxide equivalent). In Korea, GHGs emission from agriculture account for almost 3.1% of the total of anthropogenic GHGs. The GHGs emitted from agricultural land are largely classified into three types: carbon dioxide ($CO_2$), methane ($CH_4$), and nitrous oxide ($N_2O$). In Korea, rice paddies are one of the largest agricultural $CH_4$ sources. In order to analyze domestic research trends related to $CH_4$ emission from rice paddies, 93 academic publications including peer reviewed journals, books, working papers, reports, etc., published from 1995 to September 2017, were critically reviewed. The results were classified according to the research purposes. $CH_4$ characteristics and assessment were found to account for approximately 65.9% of the research trends, development of $CH_4$ emission factors for 9.5%, $CH_4$ emission reduction technology for 14.8%, and $CH_4$ emission modeling for 6.3%, etc. A number of research related to $CH_4$ emission characteristics and assessment have been studied in recent years, whereas further study on $CH_4$ emission factors are required to determine an accurate country-specific GHG emission from rice paddies. Future research should be directed toward both studies for reducing the release of $CH_4$ from rice paddies to the atmosphere and the understanding of the major controlling factors affecting $CH_4$ emission.