• 제목/요약/키워드: $N_{2}$ gas

검색결과 3,456건 처리시간 0.027초

프로판가스 검지소자의 제조 및 그 특성 (Fabrication of Propane Gas Detectors and their Characteristics)

  • 이덕동
    • 대한전자공학회논문지
    • /
    • 제16권1호
    • /
    • pp.19-23
    • /
    • 1979
  • $S_nO_2$ and $Z_nO$ based semiconductor combustible gas sensors have been fabricated and measured their charactcnstics. Adding about 0.5 wt % $P_dCf_2$ to the mixture of $S_n0_2$ and $Z_nO$ improved the sensitivity. The devices were fired for one hoar in air in the tewerature range of $400^{\circ}C$ to $1000^{\circ}C$. Their electrical conductivity was changed by t he change of atmosphenc pressure around then.

  • PDF

질화분위기에 따른 반응결합 질화규소의 미세구조변화 (The Microstructure of the Reaction -Bonded $Si_3N_4$ Formed in the Various Atmosphere)

  • 박지연;김종희
    • 한국세라믹학회지
    • /
    • 제23권5호
    • /
    • pp.61-66
    • /
    • 1986
  • The gas mixtures ($H_2$/$N_2$, He/$N_2$) having a high thermal conductivity allow the heat generated by the nitriding exotherm to be dissipated from the compact in to the nitriding atmosphere permitting a more accurate control of temperature and produces a more uniform microstructure. In order to observe the effect of the mixed gas atmosphere on the microsturcture of RBSN. the specimen was nitrided in the mixed gas atmosphere which was containe up to 50vol% $H_2$ or He for 0-12 hrs at 135$0^{\circ}C$. The addition of hydrogen to nitrogen gas resulted in the growth of a-needle at the early stage of nitrding increase of the reaction rate and a finer and more uniform microstructure. in case of the addition of helium the behaviour of reaction was similar to the one with pure nitrogen. As the amount of helium was increased a coarse microstructure was formed.

  • PDF

$Al_2O_3$ 세라믹의 미세구멍 가공시 가공조건과 보조가스가 미치는 영향 (The influence of processing condition and assistance gas in microhole machining of $Al_2O_3$ ceramics)

  • 이광길
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.115-120
    • /
    • 1999
  • This research is a described result of experimental for the parameter's effecting the microhole machining by Nd-Yag laser, The parameters are energy, pulse interval time a kin of assisting gas and its pressure. The result reveals that parameter value of energy 0.08J, pulse 20Hz, interval time of 300 microseconds could be a good machining condition to make upper microhoel that is the diameter range of 50-70${\mu}{\textrm}{m}$. At tat time the assistant gas such air, $O_2$, Ar $N_2$, was appelied. Assistant gas of air makes heat affected zone enlarge due to burning of material surface. Also it makes microhole irregular and damageable. Because of refusion caused by chemical reaction with $Al_2O_3$ ceramic material . The $O_2$(99.9%) has good characteristics to get good drilling and smooth surface on pressure of 0.2kgf/$\textrm{cm}^2$ but it is expensive. Ar, $N_2$ make material crack and burnning and proved that to be unappropriate but, Ar was a better than $N_2$.

  • PDF

다양한 파쇄 유체별 파쇄압력, 투과도 증진 및 균열전파에 관한 실험적 연구 (Experimental Study on Fracture Pressure, Permeability Enhancement and Fracture Propagation using Different Fracture Fluids)

  • 최준형;이현석;김도영;남정현;이대성
    • 터널과지하공간
    • /
    • 제31권1호
    • /
    • pp.41-51
    • /
    • 2021
  • 치밀 저류층의 투과도 증진을 위해 개발된 수압파쇄 기술은 셰일가스와 같은 비전통자원과 심부지열 개발에 필수적인 기술 중 하나이다. 파쇄형태가 단순하고 파쇄효율이 좋지 않은 수압파쇄를 개선하기 위해 다양한 파쇄유체를 이용한 실험적 연구가 진행되었다. 물, N2, CO2 가스를 파쇄유체로 사용하여 치밀 암석에 대한 파쇄형태와 효율성을 분석하였다. 파쇄유체로 물을 일정 주입속도로 주입한 경우 순간적으로 압력이 상승하여 파쇄가 발생하였으나, 파쇄유체로 가스를 주입한 경우 서서히 압력이 증가되면서 물보다 낮은 파쇄압력을 보였다. 3D 단층촬영 기법을 이용하여 물과 가스 주입으로 생성된 균열을 관찰한 결과는 기존 공극부피 대비 파쇄 자극부피가 각각 5.71%(물), 12.72%(N2), 43.82%(CO2) 증가되었다. 또한 파쇄유체의 파쇄 효율성을 검정하기 위한 파쇄 전후 투과도 변화 실험에서는 가스 파쇄에 의해 증가되는 투과도 증가 값이 물을 이용한 파쇄보다 훨씬 높게 측정되었다. 파쇄 이후 인공균열의 생성과 주변응력에 의해 다시 균열이 닫히는 현상을 고려하여 생성된 인공균열에 구속압을 단계별로 증가시켜 투과도 변화를 측정하였다. 구속압이 2MPa에서 10MPa로 증가시켰을 경우 초기 투과도 대비 각각 89%(N2), 50%(CO2) 감소하였다. 본 연구는 가스파쇄기술이 수압파쇄보다 투과도 증진 효과가 크고 이후 주변 응력에 의한 투과도 감소가 적은 것으로 나타났다.

CuTBT(Copper-tetra-tert-buthylphthalocyanine) LB막의 Chemiresistor Device 특성에 관한 연구 (A Study on the Chemiresistor Device characteristics of the CuTBP(Copper-tetra -tert-buthylphthalocyanine) LB films)

  • 이창희;구자룡;김태완;김정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.6.2-8
    • /
    • 1996
  • The NO$_2$ GAS-detection characteristic of CuTBT (Copper-tetra-tert-butylphtha1ocyanine) LB films were investigated through a study of current-voltage (I-V) characteristics with a variation of number N of interdigital electrodes (N=1∼25). A concentration of 200ppm NO$_2$ gas was used. It was found that a conductance G increases monotonically as the number of interdigital electrode increases, and a sensitivity $\Delta$G ($\Delta$G=G$\_$gas//G$\_$air/) is at least higher than 50 and stable. As far as a sensitivity is concerned, the sensitivity when N=26 is greater than that when N=1 by 70 or so. It indicates that the number of interdigital electrodes affects the currents, sensitivity and stability.

이온질화처리한 SCM4 강의 회전굽힘 부식피로 특성에 관한 연구 (A Study on the Corrosion Fatigue Characteristics of Ion-nitrided SCM4 Steel in Rotationg Bending)

  • 이두용;우창기
    • 한국정밀공학회지
    • /
    • 제6권1호
    • /
    • pp.75-84
    • /
    • 1989
  • This paper deals with the effect of $N_2$ and $H_2$gas mixture ratio and ion-nitriding time in the corrosion fatigue fracture behavior of ion-nitrided SCM4 steel with notch subject to rotary bending stress. The specimens were treated rapid water cooling after ion-nitriding at $500^{\circ}C$ Torr for 1 hour and 3 hours in gas mixtures of 80% $N_2$and 50% $N_2$. The fatigue limit and the fracture strength of corrosion fatigue depended on $N_2$gas quantity and ion-nitriding time. The ion-nitrided specimens showed about 88 .approx. 158% increase in the fracture strength of corrosion fatigue in $10^6$ cycles than non-nitrided specimens. The corrosion failure is due to corrosion pitting of the surface, and the propargation of cracks started at the surface into the core.

  • PDF

하수처리 공정별 아산화질소(N$_2$O) 배출계수 산정 (Estimate of Nitrous Oxide Emission Factors from Municipal Wastewater Treatment Plants)

  • 양형재;박정민;김민정
    • 대한환경공학회지
    • /
    • 제30권12호
    • /
    • pp.1281-1286
    • /
    • 2008
  • 하수처리과정에서 온실가스인 N$_2$O가 발생하는데, N$_2$O의 지구온난화 기여율은 CO$_2$의 310배에 달한다. 본 연구에서는 하수처리공정에 따라 온실가스 배출계수가 어떤 차이를 보이는지를 분석하기위해 운전 중인 4개의 하수처리공정을 대상으로 조사하였다. 배출계수 산정을 위한 시료채취는 Flux Chamber를 이용하였으며, N$_2$O 정량은 6 port gas sampling valve가 장착된 Agilent사의 GC로 분석하였으며, 검출기는 ECD를 사용하였다. 하수처리공정별 오염물질 유입 부하에 대한 N$_2$O 배출계수 산정결과 5-stage공정은 0.94 g-N$_2$O/kg-TN으로 가장 낮았으며, 다음으로 활성슬러지공정이 2.65 g-N$_2$O/kg-TN, Denipho공정이 9.30 g-N$_2$O/kg-TN, 그리고 SBR공정이 26.73 g-N$_2$O/kg-TN으로 가장 높게 나타났다. 하수처리에서 N$_2$O 배출량 감소를 위해서는 조사대상 시설 중 5-stage 공정이 가장 적절한 것으로 평가하였다.

CO2 레이저를 이용한 Ti-6Al-4V합금의 TiN 및 TiC 가스 합금화 (TiN and TiC Gas Alloying of Ti-6Al-4V Alloy by CO2 Laser)

  • 송기홍;이오연
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.177-186
    • /
    • 1996
  • Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN or TiC surface-alloyed layer with high hardness on the substrate by injecting reaction gas($N_2$ or $CH_4$). Laser surface alloying by means of process control is in many applications essential in order to obtain predictable hardening layer. This research has been investigated the effect of such parameters on TiN and TiC gas alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum surface hardness of TiN layer was obtained 1750Hv on the conditions of 0.8kW laser power, 0.8m/min scanning speed and 100% $N_2$ atmosphere. However, the maximum hardness of TiC formation layer after laser treatment was about 630Hv. As scanning speed was increased, the hardness and depth of these layers were decreased at constant laser power.

  • PDF

Two-Facing-Targets (TFT) 스퍼터링장치를 이용하여 증착한 AlN박막의 잔류응력 측정 (Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.697-703
    • /
    • 2021
  • Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.

N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포 (Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio))

  • 서권상;김동현;이호준
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.370-378
    • /
    • 2017
  • A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.