• Title/Summary/Keyword: $NO_x$ Conversion Efficiency

Search Result 47, Processing Time 0.02 seconds

Conversion of NOx by Plasma-hydrocarbon Selective Catalytic Reduction Process (플라즈마-탄화수소 선택적 촉매환원공정을 이용한 질소산화물 저감 연구)

  • Jo, Jin-Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • A plasma-catalytic combined process was used as an attempt to improve the conversion efficiency of nitrogen oxides ($NO_x$) over a wide temperature range ($150{\sim}500^{\circ}C$) to cope with the exhaust gas whose temperature varies greatly. Since the catalytic $NO_x$ reduction is effective at high temperatures where the activity of the catalyst itself is high, the $NO_x$ reduction was carried out without plasma generation in the high temperature region. On the other hand, in the low temperature region, the plasma was created in the catalyst bed to make up for the decreased catalytic activity, thereby increasing the $NO_x$ conversion efficiency. Effects of the types of catalysts, the reaction temperature, the concentration of the reducing agent (n-heptane), and the energy density on $NO_x$ conversion efficiency were examined. As a result of comparative analysis of various catalysts, the catalytic $NO_x$ conversion efficiency in the high temperature region was the highest in the case of the $Ag-Zn/{\gamma}-Al_2O_3$ catalyst of more than 90%. In the low temperature region, $NO_x$ was hardly removed by the hydrocarbon selective reduction process, but when the plasma was generated in the catalyst bed, the $NO_x$ conversion sharply increased to about 90%. The $NO_x$ conversion can be maintained high at temperatures of $150{\sim}500^{\circ}C$ by the combination of plasma in accordance with the temperature change of the exhaust gas.

A Performance Modeling of the Lean NOx Trap Catalyst with GT-POWERTM (GT-POWERTM를 이용한 Lean NOx Trap 촉매 성능 모델링)

  • Kim, Hyunjun;Han, Manbae;Jeon, Ji-Yong;Kim, Tae-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-71
    • /
    • 2013
  • In this study we designed a lean $NO_x$ trap (LNT) model with $GT-POWER^{TM}$ program and then the LNT model was compared to the bench flow reactor test results. This model consists of 9 kinetic reactions to represent the main steps of NO oxidation, $NO_x$ adsorption, $NO_x$ release and then its reduction. The comparison was performed on the operating conditions at the space velocity of 50,000 1/hr and 80,000 1/hr with the temperature range of $200^{\circ}C{\sim}500^{\circ}C$ with the even spaced temperature step of $50^{\circ}C$. The experimental results show that the $NO_x$ conversion efficiency was enhanced by the temperature up to $350^{\circ}C$ and then decayed at higher temperatures. The LNT model predicts the similar trend of the $NO_x$ conversion efficiency to the experimental results below $350^{\circ}C$, but overestimates above $350^{\circ}C$. This overestimation comes from the higher reduction efficiency which was obtained by the different reduction gas composition such as $C_3H_6$ in the model to replace $CH_4$, $C_2H_4$ in the bench test.

An Experimental Study on Optimization of $NH_3$ Injection for the Selective Catalytic Reduction(SCR) System (선택적 환원 촉매(SCR)에서 암모니아($NH_3$) 분사량 최적화에 대한 실험적 연구)

  • Jang, Ik-Kyoo;Yoon, Yu-Bin;Park, Young-Joon;Lee, Seang-Wock;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2874-2879
    • /
    • 2008
  • The Selective catalytic reduction(SCR) system is a highly-effective device of $NO_x$ reduction for diesel engines. Generally, the ammonia($NH_3$) generated from a liquid urea-water solution is used for the reductant. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency becomes lower, due to temperature window. And space velocity also affects to $NO_x$ conversion efficiency. This paper reviews a laboratory study to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the SCR system. The maximum conversion efficiency of $NO_x$ was indicated when the $NH_3$ to $NO_x$ ratio was 1.2 and the space velocity was $60,000\;h^{-1}$. The results of this paper contribute to improve overall $NO_x$ reduction efficiency and $NH_3$ slip.

  • PDF

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.

Development of a variable resistance-capacitance model with time delay for urea-SCR system

  • Feng, Tan;Lu, Lin
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Experimental research shows that the nitric oxides ($NO_X$) concentration track at the outlet of selective catalytic reduction (SCR) catalyst with a transient variation of Adblue dosage has a time delay and it features a characteristic of resistance-capacitance (RC). The phenomenon brings obstacles to get the simultaneously $NO_X$ expected to be reduced and equi-molar ammonia available to SCR reaction, which finally inhibits $NO_X$ conversion efficiency. Generally, engine loads change frequently, which triggers a rapid changing of Adblue dosage, and it aggravates the air quality that are caused by $NO_X$ emission and ammonia slip. In order to increase the conversion efficiency of $NO_X$ and avoid secondary pollution, the paper gives a comprehensive analysis of the SCR system and tells readers the key factors that affect time delay and RC characteristics. Accordingly, a map of time delay is established and a solution method for time constant and proportional constant is carried out. Finally, the paper accurately describes the input-output state relation of SCR system by using "variable RC model with time delay". The model can be used for a real-time correction of Adblue dosage, which can increase the conversion efficiency of $NO_X$ in SCR system and avoid secondary pollution forming. Obviously, the results of the work discover an avenue for the SCR control strategy.

The Effect of an Oxidation Precatalyst on the $NO_x$ Reduction by $NH_3$-SCR Process in Diesel Exhaust ($NH_3$-SCR 방법에 의한 디젤 배기 내 De-$NO_x$ 과정에서의 DOC에 의한 영향과 저감 성능 변화)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.68-76
    • /
    • 2008
  • Diesel $NO_x$ reduction by $NH_3$-SCR in conjunction with the effective oxidation precatalyst was analytically investigated. Physicochemical processes in regard to $NH_3$-SCR $NO_x$ reduction and catalytic NO-$NO_2$ conversion are formulated with detailed descriptions on the commanding reactions. A unified model is correctly validated with experimental data in terms of extents of $NO_x$ reduction by SCR and NO-$NO_2$ conversion by DOC. The present deterministic model based on the rate expressions of Langmuir-Hinshelwood reaction scheme finds a conversion extent directly. A series of numerical experiments concomitant with parametric analysis of the $NO_x$ reduction was conducted. $NO_x$ reduction is promoted in proportion to DOC volume ar lower temperatures and an opposite holds at lower space velocity and intermediate temperatures. $NO_x$ conversion is weakly correlated to the space velocity and the DOC volume at higher exhaust temperature. In DOC-SCR system, the $NO_x$ reduction efficiency depends on the $NH_3/NO_x$ ratio.

An Experimental Study on $NO_x$ Reduction Efficiency and $NH_3$ Conversion Efficiency under Various Conditions of Reductant Injection on SCR and AOC (SCR 촉매와 AOC 촉매에서 환원제 분사에 따른 $NO_x$ 저감효율과 $NH_3$ 변환효율에 관한 실험적 연구)

  • Dong, Yoon-Hee;Choi, Jung-Hwang;Cho, Yong-Seok;Lee, Seang-Wock;Lee, Seong-Ho;Oh, Sang-Ki;Park, Hyun-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.85-90
    • /
    • 2010
  • As the environmental regulation of vehicle emission is strengthened, investigations for $NO_x$ and PM reduction strategies are popularly conducted. Two current available technologies for continuous $NO_x$ reduction onboard diesel vehicles are Selective Catalytic Reduction (SCR) using aqueous urea and lean $NO_x$ trap (LNT) catalysts. The experiments were conducted to investigate the $NO_x$ reduction performance of SCR system which can control the ratio of $NO/NO_2$, temperature and SV(space velocity), and the model gas was used which is similar to a diesel exhaust gas. The maximum reduction efficiency is indicated when the $NO:NO_2$ ratio is 1:1 and the SV is 30,000 $h^{-1}$ in $300^{\circ}C$. Generally, ammonia slip from SCR reactors are rooted to incomplete conversion of $NH_3$ over the SCR. In this research, slip was occurred in 6cases (except low SV and $NO:NO_2$ ratio is 1:1) after SCR. Among 6 case of slip occurrence, the maximum conversion efficiency is observed when SV is 60,000 $h^{-1}$ in $400^{\circ}C$.

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

Determination of an LNT Regeneration Condition Based on a NOx Storage Fraction in a 2.2L Direct Injection Diesel Engine (2.2L 디젤 엔진에서 NOx 흡장률 기반 LNT 재생 조건 결정)

  • Chun, Bongsu;Lee, Jungwoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.345-351
    • /
    • 2016
  • This study was carried out to determine an optimal lean $NO_x$ trap (LNT) regeneration condition based on a $NO_x$ storage fraction. The LNT regeneration was performed by an in-cylinder post fuel injection method. A $NO_x$ storage fraction is defined by the ratio of current cumulated $NO_x$ amount in the LNT to the $NO_x$ storage capacity: 0 means empty and 1 fully loaded. In this study five engine operating conditions were chosen to represent the New European Driving Cycle. With various $NO_x$ storage fractions each engine operating condition, the LNT regeneration was executed and then $NO_x$ conversion efficiency, additional fuel consumption, CO and THC slip, peak catalyst temperature were measured. The results showed that there exist an optimal condition to regenerate the LNT, eg. 1500 rpm 6 bar BMEP with below 0.7 $NO_x$ storage fraction in this experimental constraint.