• Title/Summary/Keyword: $NO_2$gas

Search Result 2,394, Processing Time 0.033 seconds

Heating Value and Noxious Gases Generation of Sandwich Panel Core using Artifical Lightweight Aggregate (다공성 경량골재를 충전재로 활용한 샌드위치 패널 심재의 발열량 및 유해가스 배출특성)

  • 노정식;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.261-266
    • /
    • 2003
  • This study is to investigate the heating value and noxious gases generation such as CO, NO and $SO_2$ known as dangerous gas for human from specimen made of cement and lightweight aggregate. The most quanity of CO gas is generated in EPS(Expanded Poly Styrene), core of commercial sandwich panel. Although specimens mainly composed of cement discharged the relatively less CO gas than organic core such as EPS, specimens which SBR was added discharged the very much amount of CO gas similar to EPS and especially, specimens including foaming agent, gas foaming agent or redipersible powder of VA/VeoVa showed the good properties in the generation of CO gas. From the standpoint of the generation of NO and $SO_2$ gas, both the core of commercial sandwich panel such as EPS, Glass wool and specimens made with polymer dispersion such as St/BA and SBR discharge the very much amount of NO and $SO_2$ gas in comparison of the other specimens. From this study, it was confirmed that organic materials such as core of commercial sandwich panel dischared much more noxious gas than specimens composed of cement and inorganic lightweight aggregate.

  • PDF

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor

  • Woo, Sungyoon;Jo, Mingyeong;Lee, Joon-Seok;Choi, Seung-Ho;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.369-375
    • /
    • 2021
  • In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

A study on the $NO_2$ Gas Detection Characteristics of Octa(2-ethylhexyloxy)copper-phthalocyanine LB Films (Octa(2-ethylhexyloxy)copper-phthalocyanine LB막의 $NO_2$ 가스 탐지 특성에 관한연구)

  • Yim, Jun-Seok;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1716-1718
    • /
    • 1996
  • It is well known that the metallophthalocyanine (MPcs) are sensitive to toxic gaseous molecules such as $NO_2$ and also chemically and thermally stable. Therefore, lots of MPcs are studied for the potential chemical sensor for $NO_2$ gas using quartz crystal microbalance(QCM) or electrical conductivity. In this study, thin films of octa(2-ethylhexyloxy) copper-phthalocyanine were prepared by Langmuir-Blodgett method and characterized by using UV-VIS spectrascopy and ellipsometry. Transfer condition, film characterization, and preliminary results of current-voltage(I-V) characteristics of these films exposed to $NO_2$ gas as a function of film thickness will be discussed.

  • PDF

A study on the NO$_2$ Gas Detection Characteristics of Octa(2-ethylhexyloxy)copper-phthalocyanine LB films (Octa(2-ethylhexyloxy)copper-phnthalocyanine LB막의 NO$_2$ 가스 탐지 특성에 관한 연구)

  • 임준석;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.162-165
    • /
    • 1996
  • It is well shown that the metallophthalocyanine (MPcs) are sensitive to tonic gaseous molecules such as NO$_2$ and also chemically and thermally stable. Therefore, lots of MPcs are studied for the potential chemical sensor for NO$_2$ gas using quartz crystal microbalance(QCM) or electrical conductivity. In this study, thin films of octa(2-ethylhexyloxy) copper-phthalocyaninc ware prepared by Langmuir-Blodgett method and characterized by using UV-VIS spectrascopy and cllipsometry. Transfer condition, film characterization, and preliminary results of current-voltage(I-V) characteristics of these films exposed to NO$_2$ gas as a function of film thickness will be discusscd.

  • PDF

A study on the NO$_2$Gas Detection chracteristics of the Octa (2-ethylhexyloxy) copper-phthalocyanine LB film (Octa (2-ethyls expel oxy) copper-phthalocyanine LB막의 NO$_2$가스 탐지 특성에 관한 연구)

  • 임준석;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.121-124
    • /
    • 1996
  • It is well known that the metallo- phthalocyanine (MPcs) are sensitive to toxic gaseous molecules such as NO$_2$and also chemically and thermally stable. Therefore, lots of MPcs have been studied for the potential chemical sensor for NO$_2$gas using quartz crystal microbalance(QCM) or electrical conductivity. In this study, thin films of octa(2-ethylhexyloxy) copper-phthalocyanine were prepared by Langmuir -Blodgett method and characterized by using UV-VIS spectroscopy and ellipsometry. Transfer condition, and characterization of LB films were investigated and preliminary results of current-voltage(I-V) characteristics of these films exposed to NO$_2$gas as a function of film thickness, temperature and temperature were discussed.

  • PDF

Synthesis and Low-concentration (50 ppm) NO2 Sensing Properties of Bare and ZnO (n) Decorated TeO2 (p) Nanowires (ZnO가 첨가된 TeO2 나노와이어의 합성 및 저농도(50 ppm) 이산화질소 가스 센싱 특성)

  • Yu, Dong Jae;Shin, Ka Yoon;Oum, Wansik;Kang, Suk Woo;Kim, Eun Bi;Kim, Hyeong Min;Kim, Hyoun Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.435-441
    • /
    • 2022
  • We report the synthesis and gas sensing properties of bare and ZnO decorated TeO2 nanowires (NWs). A catalyst assisted-vapor-liquid-solid (VLS) growth method was used to synthesize TeO2 NWs and ZnO decoration was performed using an Au-catalyst assisted-VLS growth method followed by a subsequent heat treatment. Structural and morphological analyses using X-ray diffraction (XRD) and scanning/transmission electron microscopies, respectively, demonstrated the formation of bare and ZnO decorated TeO2 NWs with desired phase and morphology. NO2 gas sensing studies were performed at different temperatures ranging from 50 to 400 ℃ towards 50 ppm NO2 gas. The results obtained showed that both sensors had their best optimal sensing temperature at 350 ℃, while ZnO decorated TeO2 NWs sensor showed much better sensitivity towards NO2 relative to a bare TeO2 NWs gas sensor. The reason for the enhanced sensing performance of the ZnO decorated TeO2 NWs sensor was attributed to the formation of ZnO (n)/ TeO2 (p) heterojunctions and the high intrinsic gas sensing properties of ZnO.

Ozone Generation and NO Gas Removal Characteristics a Hybrid Discharge Type Ozonizer (복합방전형 오존발생기의 오존생성 및 NO 가스 제거특성)

  • Song, Hyun-Jig;Lee, Sang-Seock;Shin, Yong-Chul;Kim, Min-Huei;Park, Chan-Gyu;Lee, Kwang-Sik;Im, Chang-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.278-280
    • /
    • 2006
  • A hybrid discharge type ozonizer, which is superposed silent and surface discharges, has been designed and manufactured to apply for Nitrogen Oxides(NO) gas removal. The ozonizer consists of three electrodes, and is classified three types of ozonizer by changing applied voltage. Investigation was carried out variance with the flow rate of supplied oxygen gas, discharge power and the sorts of superposed discharge type ozonizer. Moreover, $NO(1200[ppm])/N_2$ gas removal investigation was also conducted to apply for environment improvement field. Two kinds of NO gas removal investigations were conducted. It distinguishes the investigations into NO gas reaction method. According to these studies, maximum removal rate of 100[%] in NO gas was obtained, and 8334[ppm] and 3249[mg/h] of maximum ozone concentration and generation were also obtained respectively.

  • PDF

Assessment of Personal Exposure to Nitrogen Dioxide in Primary Schoolchildren

  • Cho Yong-Sung;Lee Jong-Tae;Kim Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.3
    • /
    • pp.207-214
    • /
    • 2006
  • This study was designed to assess the level of nitrogen dioxide from several microenvironments including inside the home, outdoors near the home, inside the school, outdoors near the school, and on the road for 42 primary schoolchildren during the month of December 2002 in Seoul, Korea. The average personal, indoor, outdoor $NO_2$ levels, and indoor/outdoor ratio were 45.08 ppb, 27.89 ppb, 30.96 ppb, and 0.89, respectively. The indoor $NO_2$ concentrations were significantly associated with the presence of a smoker with a gas stove. The estimated personal $NO_2$ exposure using time-weighted average equation of $34.64{\pm}5.29$ ppb was significantly lower than the measured personal exposure of $45.08{\pm}5.50$ ppb. Our results indicate that indoor $NO_2$ levels were associated with the presence of a smoker and a gas stove. Moreover, personal $NO_2$ exposure with a gas stove in the house was significantly higher than those without a gas stove.

Study on the Measurement of Emission Spectrum and Reaction Mechanism of OH Radical in the Nitrogen Corona Discharge System for Removal of $NO_x$ in Flue Gas (배연가스의 $NO_x$제거용 코로나 방전장치에서 OH 발광 스펙트럼 측정 및 관련 반응 연구)

  • Park, Chul-Woung;Hahn, Jae-Won;Shin, Dong-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • We constructed a wire-cylinder type pulsed corona discharge system for $NO_x$ removal, which was operated in room temperature. A emission spectrometer was built with a boxcar averager and monochrometer equipped with photo-multiplier tube detector. The sensitivity of the emission spectrometer was greatly improved by synchronizing the emission spectrometer with pulsed corona discharge system using a triggered spark-gap switch. $N_2$ spectrum($c^3{\Pi}_u{\rightarrow}X^1{\Sigma}_g{^+}$) was measured in the range of 300 - 450 nm and oxidizing OH radical emission($A^2{\Sigma}^+{\rightarrow}X^2{\Pi}$) was measured in case $N_2$ was supplied with water bubbling. As wet gas composition of inlet $N_2$ supplied in the discharge system increased, the intensity of OH emission was increased and saturated at wet gas composition 50%. We also investigated additive effect of $C_2H_4,\;H_2O,\;H_2O_2$ on the intensity of OR emission and $NO/NO_2/NO_x$ reduction and analysed the related reaction mechanism in corona discharge process. $H_2O_2$ additive increased the intensity of OH emission and $NO/NO_x$ reduction.

  • PDF