• Title/Summary/Keyword: $NO_2$gas

Search Result 2,411, Processing Time 0.032 seconds

The effecal of irradiance during leaf development on photoinhibition in Panag ginseng C. A. Meyer

  • Parmenter, Graeme;Littlejohn, Roger
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.102-113
    • /
    • 1998
  • This experiment used chlorophyll fluorescence techniques to assess the effect of irradiant during leaf development on photoinhibition of photosynthesis in Panax ginseng. Seedlings of p. ginseng were grown in the 91asshouse at four shade levels. The maximum mid-day irradiant in each treatment between emergence (January 4) and completion of the experiment (February 25) was 1220, 485, 235, 125 $\mu$mol/$\textrm{m}^2$/s. To assess the rapidity of photosynthetic readaptation to changes in light levels, fluorescence parameters (Fo, F, Fm, Fm', AF/Fm;, Fv/Fm) were measured for three days before and after transfer of plants (on February 21) from each light treatment into each of the other light treatments. Before transfer, dark adapted values of Fv/Fm in the 1220 (0.699) and 485 (0.739) treatments were different from each other and lower than values in the 235 (0.764) and 125 (0.768) treatments, indicating mild photoinhibition. Patterns of change in F during the day also differed between treatments, with low light treatments tracking irradiant levels, but F in the high light treatment (1220) declined in the morning, presumably due to fluorescence quenching. Although plants grown at high irradiant had relatively low photosynthetic efficiency, relative electron transport rate was greater than in lower irradiant treatments. After transfer, plants adopted the daily pattern of change in F of the treatment to which they were moved with little change in absolute levels of F, except in plants transferred from the highest (1220) to the lowest light level (125), where F increased over the course of the three days following transfer. After plants were transferred, Fm' converged on values similar to those in plants raised in the treatments to which they were moved. Values of Fv/Fm in plants moved from low to high light declined dramatically, but there was no decline in plants from 485 moved to 1220. Values of Pv/Fm in plants that were moved from high light to lower light increased to values above those recorded in plants raised in the lower light treatments. Reductions in quantum efficiency caused by photoinhibition at high irradiant may be more than compensated for by higher electron transport rates, although evidence suggests that under high irradiant this tends to be balanced by reduced leaf area and earlier senescence. Chlorophyll fluorescence techniques appear capable of indicating effects of irradiant induced stress in ginseng, yielding results comparable to those obtained with gas exchange techniques but in less time and with greater replication.

  • PDF

Wet Chemical Process for Improving Air Quality in Semiconductor Manufacturing Process (반도체 생산공정의 대기질 개선을 위한 복합 대기오염물의 습식화학 제거공정)

  • Jun, Chang-Sung;Kim, Hak-Ju;Park, Young-Moo;Lee, Dae-Won;Ham, Dong-Suk;Jeon, Sang-Moon;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • In this study, we performed basic researches to develop wet purification system for improving air qualities of ventilation in semiconductor manufacturing process. Using 0.5 M aqueous solution of $KMnO_4$, 50 ppm of $NH_3$, SOx and NOx were reduced to 99% successfully. However, the removal of $O_3$ was limited to $22{\sim}30%$ for all the tested chemical solutionsincluding $KMnO_4$. Therefore, adoption of a dry ozone filter is necessary to reduce $O_3$ below a satisfactory level. For all the chemical solutions tested, NOx removal efficiency increased as NOx was mixed with $O_3$. As chemical solution was sprayed using water spraying system equipped with air atomizing type nozzle, the removal efficiencies of gaseous pollutants increased due to the increase of gas-liquid interfacial area.

  • PDF

The Visible Injury and Physiological Responses of Two Varieties of Glycine max to Ozone (오존에 의한 두 품종 콩의 가시피해 및 생리적 반응)

  • Yun Sung-Chul;Park Eun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.167-174
    • /
    • 2000
  • A glass chamber experiment was conducted to evaluate the impact of ozone (O$_3$) on the physiology of two soybean, Glycine max L. cultivars, 'Hwanggum' and 'Jangyub'. Thirty-day old plants with 1-2 nodes were exposed to $O_3$ of <10 and 150 n1 1$^{-1}$ in the chambers for 8 h d$^{-1}$ for 3 days. Net photosynthesis, stomatal conductance, chlorophyll a, chlorophyll b and total chlorophyll contents, and foliar injury (% injured leaves) were measured. Although foliar damage was more severe on Jangyub than on Hwanggum, net photosynthesis was decreased by 60% on Hwanggum and 13% on Jangyub due to the $O_3$ treatment. Stomatal conductance on Jangyub was twice higher than that on Hwanggum and it was not changed by the $O_3$ treatment. Whereas, stomatal conductance on Hwanggum was 60-80% decreased by $O_3$, Chlorophyll contents did not change due to the $O_3$ treatment or variety. We can conclude that the reduction of net photosynthesis by $O_3$ was mainly due to the decreases of stomatal conductance and Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) activity on dark reaction. And foliar injury and chlorophyll content did not contribute to the net photosynthetic decrease. The gas-exchange variables measured 24 h after the termination of $O_3$ fumigation showed that there was no significant recovery within a day. Since the physiological responses on Jangyub were not much affected by the $O_3$ treatment, this variety could be $O_3$ resistant.

  • PDF

Water Supply Change Outlook for Geum River Basin Considering RCP Climate Change Scenario (RCP 기후변화 시나리오를 고려한 금강유역의 미래 용수공급 변화전망)

  • No, Sun-Hee;Jung, Kwan Sue;Park, Jin Hyeog;Ryoo, Kyong Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.505-517
    • /
    • 2013
  • In this study, water supply for Geum River Basin was calculated by regulating the future water supply of Dam with the future expected discharges. HadGEM2-AO, which is the climate change prediction model that KMA (Korea Meteorological Administration) recently introduced was used for this study. The data of weather stations within the Geum River basin was extracted with the new Greenhouse Gas RCP scenario. The runoff of Geum river basin was simulated using the ArcSWAT for the 1988~2010 period. After validating the model, the similarity of results between simulation and observation at the Yongdam Dam and Daecheong Dam was 92.25% and 95.40%, respectively, which shows a good agreement with observed data. As the result of analysis for the discharges, the discharges would increase 47.76% under the RCP4.5 scenario and 36.52% under the RCP8.5 scenario. Water balance analysis was conducted by the KModSim for predicting the water supply under the runoff variation. We analyzed the volume of water intake with national standard of water supply 95% by Dam Operation Manual. By the analysis under RCP4.5 scenario, $9.41m^3/s$, $24.82m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam. By the analysis under the RCP8.5 scenario, $6.48m^3/s$, $21.08m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam.

Colossal Resistivity Change of Polycrystalline NiO Thin Film Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터 방법에 의한 다결정 NiO 박막의 비저항 변화)

  • Kim, Youmg-Eun;No, Young-Soo;Park, Dong-Hee;Choi, Ji-Won;Chae, Keun-Hwa;Kim, Tae-Hwan;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.475-482
    • /
    • 2010
  • Polycrystalline NiO thin films were deposited on glass substrate by RF magnetron sputtering using only Ar as a plasma sputter gas. based on the analysis of x-ray diffraction (XRD), NiO films had a polycrystalline cubic (NaCl type) structure. NiO thin films grown below and above $200^{\circ}C$ showed preferred orientation of (111) and (220) respectively. It showed colossal change in electrical resistivity as much a ${\sim}10^7$ order form an insulating state of $105\;{\Omega}cm$ below $200^{\circ}C$ to a conducting state of $10^{-2}{\sim}10^{-1}\;{\Omega}cm$ above $300^{\circ}C$ such a Mott metal-insulator transition (MIT) in polycrystalline.

Analysis of Nutritional Components and Sensory Attributes of Grilled and Fast-Chilled Mackerels (직화구이와 급랭가공법을 이용한 고등어 제품의 성분 분석 및 관능적 특성 검토)

  • Lim, Ho-Jeong;Kim, Mi So;Yoo, Hak Soo;Kim, Jae-Kyeom;Shin, Eui-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.452-459
    • /
    • 2016
  • Nutritional compositions, volatile compounds, and sensory attributes of grilled and fast-chilled mackerel (Scomber japonicus) were analyzed in order to examine its practical utilization as a food resource compared to commercial frozen mackerel. In the proximate analysis, lipid contents were $27.3{\pm}2.7%$ in grilled and fast-chilled mackerel. Palmitic acid was the most predominant fatty acid (20.68% and 18.88%), and the percentages of polyunsaturated fatty acid were higher than 40% in both. No benzopyrene was found in the grilled mackerel, and even grilling was employed at $260^{\circ}C$. For chemical stabilities, para-anisidine value (8.56 vs. 9.26) and acid value (2.96 vs. 3.35) in grilled mackerel were improved compared to those of commercial mackerel. Moreover, color index of grilled mackerel, a physiological property, showed greater lightness than commercial mackerel. Lastly, analysis of volatile compounds by gas chromatographic analysis and sensory tests by trained panels demonstrated higher potential for grilled mackerel as a highly marketable product compared to commercial mackerel. Taken altogether, the above results provide important preliminary results for utilization of grilled and fast-chilled mackerel as a quality food.

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.

Field Application and Maintenance of sidewalk concrete block for PV Power Generation (태양광 발전을 위한 보도형 콘크리트 블록의 현장 적용과 유지관리)

  • Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • In order to fulfill the obligation to voluntarily reduce greenhouse gas emissions under the Paris Climate Agreement, the proportion of coal and nuclear power generation is reduced worldwide and national efforts are being made to spread renewable energy including solar power generation. Korea also intends to increase the proportion of renewable energy generation to 30~35% by 2040 by introducing laws and regulations. In addition, while the country is trying to apply solar power generation to sidewalks and roads, there is no research related to it in Korea. Therefore, as a precedent study to develop solar power generation roads, solar power generation concrete blocks applicable to sidewalks and plazas were developed and the applicability was evaluated by constructing them on the site. As a result of indoor experiment, compressive strength was measured by 25.5~35.7MPa and flexural strength was measured by 5.1~10.5MPa, which showed that all domestic standards were satisfied. However, the higher the unit cement amount, the lower the strength was measured according to the mixing of the broken fine aggregate. The absorption rate was 5.7%, which satisfied the domestic standard of 7% or less. As a result of the freeze-thawing test, the reduction rate of the compressive strength after 100 cycles was up to 6.3%. As a result of measuring the settlement amount after construction, the maximum of 2.498mm was measured and irregular settlement occurred in the overall area, which is because the resolution of the sand layer was poor during construction. Maintenance techniques of sidewalk concrete block and solar panel need to be established more efficiently through long-term operation in the further.

Utilization of Upgraded Solid Fuel Made by the Torrefaction of Indonesian Biomass (인도네시아 바이오매스 반탄화를 통해 제조된 고품위 고형연료의 활용)

  • Yoo, Jiho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.239-250
    • /
    • 2020
  • Biomass is an abundant renewable energy resource that can replace fossil fuels for the reduction of greenhouse gas (GHG). Indonesia has a large number of cheap biomass feedstocks, such as reforestation (waste wood) and palm residues (empty fruit bunch or EFB). In general, raw biomass contains more than 20% moisture and lacks calorific value, energy density, grindability, and combustion efficiency. Those properties are not acceptable fuel attributes as the conditions currently stand. Recently, torrefaction facilities, especially in European countries, have been built to upgrade raw biomass to solid fuel with high quality. In Korea, there is no significant market for torrefied solid fuel (co-firing) made of biomass residues, and only the wood pellet market presently thrives (~ 2 million ton yr-1). However, increasing demand for an upgraded solid fuel exists. In Indonesia, torrefied woody residues as co-firing fuel are economically feasible under the governmental promotion of renewable energy such as in feed-in-tariff (FIT). EFB, one of the chief palm residues, could replace coal in cement kiln when the emission trading system (ETS) and clean development mechanism (CDM) system are implemented. However, technical issues such as slagging (alkali metal) and corrosion (chlorine) should be addressed to utilize torrefied EFB at a pulverized coal boiler.