• Title/Summary/Keyword: $NO_{x}$ emission

Search Result 488, Processing Time 0.027 seconds

Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan

  • Matsunaga, Sou N.;Shimada, Kojiro;Masuda, Tatsuhiko;Hoshi, Junya;Sato, Sumito;Nagashima, Hiroki;Ueno, Hiroyuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.29-32
    • /
    • 2017
  • Ozone concentration in Tokyo Metropolitan area is one of the most serious issues of the local air quality. Tropospheric ozone is formed by radical reaction including volatile organic compound (VOC) and nitrogen oxides ($NO_x$). Reduction of the emission of reactive VOC is a key to reducing ozone concentrations. VOC is emitted from anthropogenic sources and also from vegetation (biogenic VOC or BVOC). BVOC also forms ozone through $NO_x$ and radical reactions. Especially, in urban area, the BVOC is emitted into the atmosphere with high $NO_x$ concentration. Therefore, trees bordering streets and green spaces in urban area may contribute to tropospheric ozone. On the other hand, not all trees emit BVOC which will produce ozone locally. In this study, BVOC emissions have been investigated (terpenoids: isoprene, monoterpenes, sesquiterpenes) for 29 tree species. Eleven in the 29 species were tree species that did not emit BVOCs. Three in 12 cultivars for future planting (25 %) were found to emit no terpenoid BVOCs. Eight in 17 commonly planted trees (47%) were found to emit no terpenoid BVOC. Lower-emitting species have many advantages for urban planting. Therefore, further investigation is required to find the species which do not emit terpenoid BVOC. Emission of reactive BVOC should be added into guideline for the urban planting to prevent the creation of sources of ozone. It is desirable that species with no reactive BVOC emission are planted along urban streets and green areas in urban areas, such as Tokyo.

Characterization of Atmospheric Dispersion Pattern from Large Sources in Chungnam, Korea (충남지역 대형사업장의 대기오염물질 확산 특성 파악)

  • Choi, Woo Yeong;Park, Min Ha;Jung, Chang Hoon;Kim, Yong Pyo;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.55-69
    • /
    • 2021
  • Chungnam region accounts for the largest SOX (22.8%) emission with the second-largest NOX (10.8%) emission in Korea due to the integration of many large industrial sources including a steel mill, coal-fired power plants, and petrochemical complex. Air pollutants emitted by large industrial sources can cause harmful problems to humans and the environment. Thus, it is necessary to understand dispersion patterns of air pollutants from large industrial sources in Chungnam to characterize atmospheric contamination in Chungnam and the surrounding area. In this study, seasonal atmospheric dispersion characteristics for SOX, NOX, and PM2.5 from ten major point sources in Chungnam were evaluated using HYSPLIT 4 model, and their contributions to SO2, NO2 concentrations in the regions near the source areas were estimated. The predictions of the HYSPLIT 4 model show a seasonal different dispersion pattern, in which air pollutants were dispersed toward the southeast in winter while, northeast in summer. In summer, due to weaker wind speed, air pollutants concentrations were higher than in winter, and they were dispersed to the metropolitan area. The local emissions of air pollutants in Taean area had a greater influence on the ambient SO2 and NO2 concentrations at Taean, whereas SOX and NOX emissions from large sources located at Seosan showed relatevely little effect on the ambient ambient SO2 and NO2 concentrations at Seosan.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine (디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

Experimental Study on Characteristics of NOX Reduction with Urea-Selective Catalytic Reduction System in Diesel Passenger Vehicle (승용 디젤차량에서 Urea-SCR 시스템의 NOX 저감 특성에 관한 실험적 연구)

  • Park, Seungwon;Lee, Seangwock;Cho, Yongseok;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • $NO_X$ reducing technique such as LNT, LNC, and selective catalytic reduction (SCR) have been developed and applied, especially on heavy-duty vehicles. However, it is expected that $NO_X$ reduction techniques will also be applied to diesel passenger vehicles. The urea-SCR system is receiving attention as the most effective $NO_X$ reduction technology without a fuel penalty. Thus, many advanced countries are developing this technology. The urea-SCR system sprays an aqueous urea solution that separates $NO_X$ into $N_2$ and $H_2O$, which are harmless and emitted into the atmosphere. The urea injected in front of the SCR catalyst should be changed to 100% $NH_3$, which is required for $NO_X$ reduction in the SCR system to maximize the reduction efficiency. The purpose of this study was to determine the basic data for the urea-SCR system to maximize the $NO_X$ reduction efficiency by understanding the $NO_X$ reduction characteristics in a real passenger vehicle to comply with the post EURO-6 emission regulation.

A Study on the Effects of EGR with Syngas Addition in a Gasoline Engine (가솔린 엔진에서 합성가스 첨가량에 따른 EGR 효과에 대한 연구)

  • Yun, Young-Jun;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.159-164
    • /
    • 2007
  • The purpose of this study is to reduce harmful emission gases in the range of stable combustion without loss of a thermal efficiency. Therefore, effects of both exhaust gas recirculation(EGR) and synthetic gas addition on engine performance and emission were investigated in a gasoline engine. Synthetic gas(syngas), which is in general prepared from reforming gasoline, was utilized in order to promote stable combustion. The major components of syngas are H2, CO and $N_2$ gases. The percentage of syngas addition was changed from 0 to 30% in energy fraction and EGR rate was varied up to 30%. As a result, $COV_{IMEP}$ as a parameter of combustion stability was decreased and THC/$NO_X$ emissions were reduced with the increase of syngas addition. And $COV_{IMEP}$ was increased with the increase of EGR but $NO_X$ emission was greatly reduced. In addition, under the region where the EGR rate is around 20%, thermal efficiency was improved.

Development of Low NOx Gas Burner Absorption Chiller/Heater Unit (흡수식 냉온수기용 저 NOx 가스버너 개발)

  • 최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.277-283
    • /
    • 1995
  • For the development of low NO$_{x}$ gas burners aimed for absorption chiller/heater unit, three proto type burners of different capacity (265000, 498000, and 664000 kcal/h) have been manufactured through a combustion method of step-by-step air injection. In order to characterize the overall features of the flame and the properties of the emission gas, the temperature of the flame and the concentration of NO$_{x}$ and CO were determined. The main factors in the design of burners (the area of primary air injection, the diameter of secondary air injection hole, fuel nozzle diameter) were observed to increase linearly with the scale-up of burner capacity. The flame temperature profiles of the burners were observed to be almost similar, irrespective of their capacity. However, as their capacity increased, the flame temperature slightly increased and the hot region of the flames moved to ward the flame tip along with the expansion to the direction of radius. From the proto type units, the amount of their NO$_{x}$ emission was determined to be around 25 - 30 vppm(3% )$_{2}$) and the CO emission was less than 19 vppm (3% $O_{2}$).TEX>).

Comparison of effects of spark timing and fuel ratio on engine efficiency and $NO_x$ emission for fuel of city gas and syngas($H_2$ and CO) (도시가스와 혼합가스($H_2$, CO) 적용 시 점화시기 및 공연비에 따른 발전효율 및 질소산화물 배출량 비교)

  • Jeong, Chul-Young;Lee, Kyung-Teak;Song, Soon-Ho;Chun, Kwang-Min;Nam, Sang-Ick
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.817-820
    • /
    • 2009
  • Research on usage of syngas produced by waste gasification is on going all around the world. Syngas which consists of $H_2$, CO, $CO_2$, $N_2$, has different combustion characteristics from current city gas; due to distinct flame propagation speed of the fuel, syngas has different spark timing and air fuel ratio at maximum generating efficiency. This is why finding both the optimum point of spark timing and air fuel ratio is so important in order to improve thermo efficiency and secure stable running of gas generated by relatively low heating value syngas. Moreover, since emission of $NO_x$ is strictly regulated, it is important to operate lean burn condition that reduces NOx emission.

  • PDF

Comparison on Exhaust Gas of Heavy Duty Diesel Trucks; THC and CO Emission Affected by NOx Control Devices (EGR, SCR) (대형 경유트럭의 NOx 저감장치에 따른 배출가스 특성비교)

  • Mun, SunHee;Yoo, Heung-Min;Son, JiHwan;Yun, Changwan;Park, Gyu Tae;Kim, JeongSoo;Lee, Jongtae
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.149-155
    • /
    • 2015
  • With increasing of GDP, the registration number of passenger cars has exceeded 20 million last year in Korea. Especially, the registration number of the diesel engine vehicles has been increasing. However, the WHO(World Health Organization) IARC (International Agency for Research on Cancer) has reported that diesel engine exhaust gas is an one of HAPs, which has carcinogenic for human, and they have designated it to Group 1. To solve this problem, exhaust gas from diesel engines has to be controlled. Thus, it has been controlling by European regulatory standard in Korea. On the other hand, in order to meet the enhanced emission regulations, all manufacturing company applied $NO_x$ control device to vehicles such as EGR (Exhaust Gas Recirculation), SCR (Selective Catalytic Reduction) and so on. However, these devices (EGR, SCR) were operated by difference reaction mechanism respectively, and the composition of exhaust gas would be differenced from that of them. In this study, it was conducted to evaluate variety characteristics on changing of exhaust gas composition by each $NO_x$ control device, and the heavy duty diesel trucks were chosen as experimental vehicles. From the result, it revealed that vehicles (with EGR) were discharged higher THC as 52.5% than that of others (with SCR). However, it did not followed that trend, in the case of CO; it was discharged as 57.2% lower than that of others (with SCR). In the future, these data would be used to apply to efficient $NO_x$ control device for meeting to EURO 6.

NOx Reduction Characteristics of Ship Power Generator Engine SCR Catalysts according to Cell Density Difference (선박 발전기관용 SCR 촉매의 셀 밀도차에 따른 NOx 저감 특성)

  • Kyung-Sun Lim;Myeong-Hwan Im
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1209-1215
    • /
    • 2022
  • The selective catalytic reduction (SCR) is known as a very efficient method to reduce nitrogen oxides (NOx) and the catalyst performs reduction from nitrogen oxides (NOx) to nitrogen (N2) and water vapor (H2O). The catalyst, which is one of the factors determining the performance of the nitrogen oxide (NOx) ruduction method, is known to increase catalyst efficiency as cell density increases. In this study, the reduction characteristics of nitrogen oxides (NOx) under various engine loads investigated. A 100CPSI(60Cell) catalysts was studied through a laboratory-sized simulating device that can simulate the exhaust gas conditions from the power generation engine installed in the training ship SEGERO. The effect of 100CPSI(60Cell) cell density was compared with that of 25.8CPSI(30Cell) cell density that already had NOx reduction data from the SCR manufacturing. The experimental catalysts were honeycomb type and its compositions and materials of V2O5-WO3-TiO2 were retained, with only change on cell density. As a result, the NOx concentration reduction rate from 100CPSI(60Cell) catalyst was 88.5%, and IMO specific NOx emission was 0.99g/kwh satisfying the IMO Tier III NOx emission requirement. The NOx concentration reduction rate from 25.8CPSI(30Cell) was 78%, and IMO specific NOx emission was 2.00g/kwh. Comparing the NOx concentration reduction rate and emission of 100CPSI(60Cell) and 25.8CPSI(30Cell) catalysts, notably, the NOx concentration reduction rate of 100CPSI(60Cell) catalyst was 10.5% higher and its IMO specific NOx emission was about twice less than that of the 25.8CPSI(30Cell) catalysts. Therefore, an efficient NOx reduction effect can be expected by increasing the cell density of catalysts. In other words, effects to production cost reduction, efficient arrangement of engine room and cargo space can be estimated from the reduced catalyst volume.

A Study on Cold Start Emission Characteristics using the Syngas in a SI Engine (합성가스를 이용한 SI 엔진의 냉간시동 배기가스 배출특성에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.66-72
    • /
    • 2008
  • Fuel reforming technology for the fuel cell vehicles could be adopted to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to 2.0 liter gasoline engine during the cold start and early state of idle condition. Not only cold start HC emission but also $NO_x$ emission could be dramatically reduced due to the fact that syngas has no HC and has nitrogen up to 50% as components. Exhaust gas temperature was lower than that of gasoline feeding condition. Delayed ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in the gasoline internal combustion engine is an effective solution to meet the future strict emission regulations by the reduction of cold start THC and $NO_x$ emissions.