• Title/Summary/Keyword: $NF-_{k}B$

Search Result 1,704, Processing Time 0.033 seconds

Discovery of Novel Transcription Factor Inhibitors Using a Pyrazole-based Small Molecule Library

  • Ha, Hyung-Ho;Kim, B.Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.323-327
    • /
    • 2008
  • A focused library of pyrazole-based compounds was constructed towards novel transcription factor inhibitors. Complementary hydrogen bonding interaction with b-sheet peptide structures was the basis for the design of 5-amino-3-pyrazole carboxamide scaffold. From the preliminary inhibition assay against several transcription factors, compounds 7e and 8g were identified as novel lead compounds against HIF-1a and NF-AT transcription factors, respectively.

Mathematical Modeling of the Influence of HBV on the NF k B signaling pathway (간염 바이러스 감염이 NF$_k$ B pathway에 끼치는 영향의 수학적 모델링)

  • 이태형;박근수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.733-735
    • /
    • 2004
  • 생명 현상을 시스템적으로 이해하기 위해서는 현상에 대한 수학적 모델링이 필수적이다. 여러 가지 수학적 모델 가운데 상미분 방정식(ODE) 모델은 여러 가지 생화학 반응을 모델링 하는데 널리 사용되고 있다. 본 논문에서는 신호전달 경로에 B형 간염 바이러스가 미치는 영향을 ODE로 모델링하고, 이를 시뮬레이션 한 결과를 보인다. 또한, ODE모델을 설계하는데 있어 보다 유연하고 확장 가능한 새로운 표현 방식을 제안한다.

  • PDF

Anti-inflammatory Activity of Fucoidan with Blocking NF-κB and STAT1 in Human Keratinocytes Cells

  • Ryu, Min Ju;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Fucoidan, a sulfated polysaccharide is found in several types of edible brown algae. It has shown numerous biological activities; however, the molecular mechanisms on the activity against atopic dermatitis have not been reported yet. We now examined the effects of fucoidan on chemokine production co-induced by TNF-α/IFN-γ, and the possible mechanisms underlying these biological effects. Our data showed that fucoidan inhibited the TNF-α/IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophagederived chemokine (MDC) mRNA in human keratinocytes HaCaT cells. Also, fucoidan suppressed phosphorylation of nuclear factor kappa B (NF-κB) and activation of signal transducer and activator of transcription (STAT)1 in a dose-dependent manner. In addition, fucoidan significantly inhibited activation of extracellular-signal-regulated kinases (ERK) phosphorylation. These data indicate that fucoidan shows anti-inflammatory effects by suppressing the expression of TNF-α/IFN-γ-induced chemokines by blocking NF-κB, STAT1, and ERK1/2 activation, suggestive of as used as a therapeutic application in inflammatory skin diseases, such as atopic dermatitis.

Adenophorae Radix Attenuates Mast Cell-mediated Allergic Inflammation through Down-regulation of NF-κB/ Caspase-1 Activation

  • Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.659-665
    • /
    • 2020
  • Adenophorae Radix (AR) has been used as a traditional medicine for various diseases. However, the regulatory mechanisms of AR in allergic inflammation are not yet understood. The present study was conducted to investigate the effect and mechanisms of AR on the mast cell-mediated allergic response. To determine the pharmacological mechanisms of AR in allergic inflammation, we evaluated the effects of AR on the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-8 as well as the activation of nuclear factor-κB (NF-κB) and caspase-1 in phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated human mast cells (HMC-1). Our results demonstrated that AR effectively attenuated the PMACI-induced production of TNF-α, IL-6, IL-1β and IL-8 in stimulated HMC-1. Additionally, we showed that the inhibitory effect of AR on inflammatory cytokines in PMACI-stimulated HMC-1 cells involved the suppression of the activation NF-kB/caspase-1 in PMACI-stimulated HMC-1. Collectively, these findings provide experimental evidence that AR may be a useful candidate for the treatment of allergic inflammation.

The Effect of Silibinin Extracted from Cirsium Japonicum on Allergic Inflammation (대계(大薊)의 주성분인 Silibinin이 알레르기 염증반응에 미치는 효과(效果))

  • Kim, Beom-Rak;Kim, Koung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.1
    • /
    • pp.44-58
    • /
    • 2010
  • Silibinin is the major active molecule of silymarin, the mixture of flavonolignans extracted from Cirsium japonicum (CJ). It has been used for treatment of hepatitis and inflammation related diseases. The aim of this study was to prove whether Silibinin has effectiveness for allergic inflammation. Silibinin processes the inflammatory reaction in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 (PMA plus A23187) stimulated human mast cell line (HMC-1). Its effect was examined by ELISA, RT-PCR, Western blot, and Luciferase assay. The results were Silibinin inhibited the expression of histamine, TNF-$\alpha$ (tumor necrosis factor-$\alpha$), IL-6 (interleukin-6), and IL-8 (interleukin-8). Silibinin suppressed NF-${\kappa}B$ (nuclear factor kappa B) activation in stimulated HMC-1 (human mast cell-1). This effect was mediated through inhibition of phosphorylation and degradation of $IkB{\alpha}$, an inhibitor of NF-kB. Silibinin significantly inhibited induction of NF-kB promoter mediated Luciferase assay. These results suggest that Silibinin has a potential molecule for therapy of mast cell-derived allergic inflammatory diseases.

Effect of Zibachunggan-tang on lipopolysaccharide-induced expression of NF-kB downstream genes in HepG2 cell (자발 '청간탕'이 HepG2 cell의 염증반응에 대한 연구)

  • Hong Sang Hoon;Choi Byung Tae;Lee Yong Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1251-1256
    • /
    • 2003
  • To determine the effect of Zibachunggan-tang(ZCT) on the process of lipopolysaccharide (LPS)-induced nuclear factor-kBp65 (NF-kBp65) activation, and LPS-induced expression of pro-inflammatory proteins including tumor necrosis factor-α (TNF-α), nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in HepG2 cell. Immunoblot analysis showed that the level of nucleic NF-kBp65 was rapidly up-regulated and cytosolic inhibitory I-kBα was down-regulated by LPS challenge. While ZCT inhibited an increase of NF-kBp65 and degradation of I-kBα in HepG2 cell. Beside LPS-induced expression of a group of genes, such as TNF-α, inducible iNOS and COX-2, are repressed by ZCT. It may be concluded that ZCT attenuates the progress of LPS-induced inflammation by reduction of NF-kBp65 activation. The ZCT would be useful as a therapeutic agent for endotoxin-induced liver disease.

Apoptosis-inducing Effect of Herba Patriniae Extract in the Prostate Cancer LNCaP Cells (전립선 암세포에서 패장 추출물의 세포고사 유도 효과)

  • Moon Hyung Cheal
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.863-867
    • /
    • 2004
  • Herba Patriniae(HP) has been known to exert anti-inflammation and -tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that HP extract induced apoptosis in androgen-dependent prostate cancer LNCaP cells as evidenced by DNA fragmentation. Our data demonstrated that HP extract-induced apoptotic cell death was accompanied by inhibition of NF- κB activation, lowering effects of intracellular prostate specific antigen(PSA) and androgen reoeptor(AR) expression in a time dependent manner. Taken together, HP extract may inhibit the proliferation of prostate cancer LNCaP cell associated with inhibition of NF- κB activation, PSA and AR expression and that of apoptosis.

The Anti-Inflammatory Effects of Phytochemicals by the Modulation of Innate Immunity

  • Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.181-192
    • /
    • 2012
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways; myeloid differential factor 88 (MyD88) and Toll/IL-1R domain-containing adaptor inducing IFN-${\beta}$ (TRIF) leading to the activation of NF-${\kappa}B$ and IRF3. Numerous studies demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit NF-${\kappa}B$ activation induced by pro-inflammatory stimuli including lipopolysaccharide and tumor necrosis factor-${\alpha}$ ($TNF{\alpha}$). However, the direct molecular targets for such anti-inflammatory phytochemicals are not fully identified. In this paper, we will discuss about the molecular targets of phytochemicals in TLRs signaling pathways. These results present a novel anti-inflammatory mechanism of phytochemicals in TLRs signaling.

Diet components can suppress inflammation and reduce cancer risk

  • Hardman, W. Elaine
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.233-240
    • /
    • 2014
  • Epidemiology studies indicate that diet or specific dietary components can reduce the risk for cancer, cardiovascular disease and diabetes. An underlying cause of these diseases is chronic inflammation. Dietary components that are beneficial against disease seem to have multiple mechanisms of action and many also have a common mechanism of reducing inflammation, often via the $NF{\kappa}B$ pathway. Thus, a plant based diet can contain many components that reduce inflammation and can reduce the risk for developing all three of these chronic diseases. We summarize dietary components that have been shown to reduce cancer risk and two studies that show that dietary walnut can reduce cancer growth and development. Part of the mechanism for the anticancer benefit of walnut was by suppressing the activation of $NF{\kappa}B$. In this brief review, we focus on reduction of cancer risk by dietary components and the relationship to suppression of inflammation. However, it should be remembered that most dietary components have multiple beneficial mechanisms of action that can be additive and that suppression of chronic inflammation should reduce the risk for all three chronic diseases.

Red Ginseng Ethanol Extract Suppressed Ag I/II-induced Up-expression of Inflammatory Mediators in RAW 264.7 Macrophages (홍삼에탄올추출물의 염증유발인자에 대한 억제효과)

  • Choi, Kyung-Min;Hwang, Seung-Mi;Lim, Ji-Ye;Ko, Eun-Sil;Park, Jong-Hyuk;Moon, Jung-Hye;Lee, Min-Jung;Jang, Ji-Eun;Cha, Jeong-Dan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.158-163
    • /
    • 2015
  • In this study, we investigated the effects of 40% ethanol extract of Red Ginseng (RGE) on the productions of inflammatory proteins in Antigen I/II (Ag I/II)-N, a recombinant protein isolated from Streptococcus mutans -stimulated in RAW 264.7 cells. RGE inhibited the expression of Ag I/II-N-induced pro-inflammatory mediators, both mRNA and protein synthesis levels, without any cytotoxic effects. Moreover, RGE significantly inhibited Ag I/II-N induced NF-κB translocation into the nucleus by preventing the degradation of inhibitor κB-α. In conclusion, RGE down regulates the expression of pro-inflammatory genes involved in the synthesis of NO and iNOS in Ag I/II-N-stimulated RAW 264.7 cells by suppressing NF-κB activity.