• 제목/요약/키워드: $NF-_{k}B$

검색결과 1,702건 처리시간 0.03초

Quercitrin Gallate Down-regulates Interleukin-6 Expression by Inhibiting Nuclear Factor-kB Activation in Lipopolysaccharide-stimulated Macrophages

  • Min, Kyung-Rak;Kim, Byung-Hak;Chang, Yoon-Sook;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • 제12권2호
    • /
    • pp.113-117
    • /
    • 2006
  • Quercitrin gallate was previously isolated from Persicaria lapathifolia (Polygonaceae) as an inhibitor of superoxide production. In the present study, quercitrin gallate was found to inhibit interleukin (IL)-6 production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an $IC_{50}$ value of $63\;{\mu}M$. Furthermore, quercitrin gallate attenuated LPS-induced synthesis of IL-6 transcript but also inhibited LPS-induced IL-6 promoter activity, indicating that the compound could down-regulate IL-6 expression at the transcription level. Since nuclear factor (NF)-kB has been shown to play a key role in LPS-inducible IL-6 expression, an effect of quercitrin gallate on LPS-induced NF-kB activation was further analyzed. Quercitrin gallate exhibited a dosedependent inhibitory effect on LPS-induced nuclear translocation of NF-kB without affecting inhibitory kB (IkB) degradation, and subsequently inhibited LPS-induced NF-kB transcriptional activity in macrophages RAW 264.7. Taken together, quercitrin gallate down-regulated LPS-induced IL-6 expression by inhibiting NF-kB activation, which could provide a pharmacological potential of the compound in IL-6-related immune and inflammatory diseases.

Ethanol-induced Activiationof Transcription Factor NF-$\kappa$B and AP-1 in C6 Glial Cells

  • Park, Jae -Won;Shim, Young-Sup
    • Preventive Nutrition and Food Science
    • /
    • 제4권3호
    • /
    • pp.209-214
    • /
    • 1999
  • In this study, the effectof ethanol and acetaldehyde on DNA binding activities of NF-$textsc{k}$B and AP-1 were evaluated in C6 rat glial cells. Both NF-$textsc{k}$B and AP-1 are important transcription factors for the expression of various cytokines in glial cells. Our data showed that neither ethanol nor acetaldehyde induced conspicuous cell death of C6 cells at clinically realistic concentrations. When the DNA binding activities of nuclear NF-$textsc{k}$B and AP-1 were estimated using electrophoretic mobility shift assay (EMSA), ethanol(0.3%) or acetaldehyde(1mM) induced transient activation of these transcription factors, which attained peak levels at 4~8 hours and declined to basal levels at 12 hours after treatement . The supershift analysis showed that the increased activities of NF-$textsc{k}$B in ethanol/acetaldehyde-treated C6 cells were due to the preferential induction of p65/p50 heterodimer complex. The DNA binding activities of these transcriptional factors decreased below basal levels when cells were cultured with either ethanol or acetaldehyde for 24 hours, and showed the inhibitory effect of chronic ehtanol /acetaldehyde treatment on the activities of these transsriptional factors. Our data indicate that either ethanol or acetaldehyde can induce functional changes of glial cells throught bi-directional modulation of NF-$textsc{k}$B and AP-1 DNA binding activities.

  • PDF

폐 상피세포에서 PI3K/Akt 경로가 IκB/NF-κB 경로의 활성화에 미치는 영향 (Role of PI3K/Akt Pathway in the Activation of IκB/NF-κB Pathway in Lung Epithelial Cells)

  • 이상민;김윤경;황윤하;이창훈;이희석;이춘택;김영환;한성구;심영수;유철규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제54권5호
    • /
    • pp.551-562
    • /
    • 2003
  • 연구배경 : NF-${\kappa}B$는 많은 염증 유발성 물질들을 발현시키는데 필요한 전사 인자로서, 염증성 폐질환 발병에 관여한다는 사실이 확인되었다. 이러한 NF-${\kappa}B$의 활성화에는 여러 신호전달 체계가 관여한다는 사실이 밝혀지고 있으며 최근 PI3K/Akt 경로도 NF-${\kappa}B$ 활성화에 관여한다는 연구 결과가 보고되고 있으나, 실험 대상 세포주마다 활성화 기전이 다르고 호흡기 상피세포에 대한 결과도 알려져 있지 않아 호흡기 상피세포에서의 NF-${\kappa}B$ 활성화에 PI3K/Akt 경로가 관여하는지를 밝히기 위하여 본 연구를 시행하게 되었다. 방법 : 인체 기관지 상피세포주인 BEAS-2B와 폐암 세포주인 A549, NCI-H157을 사용하여 Akt 활성화와 $I{\kappa}B{\alpha}$ 분해 여부를 확인하기 위해 western blot을 시행하였다. Wortmannin, LY294002 및 DN-Akt를 이용하여 Akt 경로를 억제하였고, NF-${\kappa}B$ 활성화와 전사 활성을 측정하기 위하여 각각 EMSA와 luciferase assay를 시행하였다. 결과 : BEAS-2B, A549 및 NCI-H157 세포주에 TNF-$\alpha$ 및 insulin을 처리한 경우 Akt 활성화가 유도되었다. Insulin 으로 Akt 경로를 활성화시킨 경우 $I{\kappa}B{\alpha}$ 분해가 일어나지는 않았다. Wortmannin, LY294002 및 DN-Akt 를 이용하여 Akt 경로를 억제한 경우 TNF-$\alpha$에 의한 $I{\kappa}B{\alpha}$ 분해 및 IKK 활성화가 억제되지는 않았으며, NF-${\kappa}B$ 활성화도 억제되지 않았다. Wortmannin을 처리한 경우 TNF-$\alpha$에 의한 NF-${\kappa}B$ 전사 활성이 오히려 증가하는 양상을 보였으나, DN-Akt 이입시킨 경우에는 관찰되지 않았다. 결론 : 인체 호흡기 상피세포에서는 $I{\kappa}B$/NF-${\kappa}B$ 경로의 활성화는 PI3K/Akt 경로와 무관한 것으로 판단된다.

ZAS3 promotes TNFα-induced apoptosis by blocking NFκB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2

  • Shin, Dong-Hyeon;Park, Kye-Won;Wu, Lai-Chu;Hong, Joung-Woo
    • BMB Reports
    • /
    • 제44권4호
    • /
    • pp.267-272
    • /
    • 2011
  • ZAS3 is a large zinc finger transcription repressor that binds the ${\kappa}B$-motif via two signature domains of ZASN and ZASC. A loss-of-function study showed that lack of ZAS3 protein induced accelerated cell proliferation and tumorigenesis. Conversely, gain-of-function studies showed that ZAS3 repressed $NF{\kappa}B$-activated transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Based on these observations, we hypothesize that ZAS3 promotes apoptosis by interrupting anti-apoptotic activity of $NF{\kappa}B$. Here, we present evidence that upon $TNF{\alpha}$ stimulation, ZAS3 inhibits $NF{\kappa}B$-mediated cell survival and promotes caspase-mediated apoptosis. The inhibitory effect of ZAS3 on $NF{\kappa}B$ activity is mediated by neither direct association with $NF{\kappa}B$ nor disrupting nuclear localization of $NF{\kappa}B$. Instead, ZAS3 repressed the expression of two key anti-apoptotic genes of $NF{\kappa}B$, TRAF1 and TRAF2, thereby sensitizing cells to $TNF{\alpha}$-induced cell death. Taken together, our data suggest that ZAS3 is a tumor suppressor gene and therefore serves as a novel therapeutic target for developing anti-cancer drugs.

Gamma Irradiation Up-regulates Expression of B Cell Differentiation Molecule CD23 by NF-κB Activation

  • Rho, Hyun-Sook;Park, Soon-Suk;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.507-514
    • /
    • 2004
  • Gamma irradiation ($\gamma$-IR) is reported to have diverse effects on immune cell apoptosis, survival and differentiation. In the present study, the immunomodulatory effect of a low dose $\gamma$-IR (5~10 Gy) was investigated, focusing on the role of NF-${\kappa}B$ in the induction of the B cell differentiation molecule, CD23/FceRII. In the human B cell line Ramos, $\gamma$-IR not only induced CD23 expression, but also augmented the IL-4-induced surface CD23 levels. While $\gamma$-IR did not cause STAT6 activation in these cells, it did induce both DNA binding and the transcriptional activity of NF-${\kappa}B$ in the $I{\kappa}B$ degradation-dependent manner. It was subsequently found that different NF-${\kappa}B$ regulating signals modulated the $\gamma$-IR-or IL-4-induced CD23 expression. Inhibitors of NF-${\kappa}B$ activation, such as PDTC and MG132, suppressed the $\gamma$-IR-mediated CD23 expression. In contrast, Ras, which potentiates $\gamma$-IR-induced NF-${\kappa}B$ activity in these cells, further augmented the $\gamma$-IR- or IL-4-induced CD23 levels, The induction of NF-${\kappa}B$ activation and the subsequent up-regulation of CD23 expression by $\gamma$-IR were also observed in monocytic cells. These results suggest that $\gamma$-IR, at specific dosages, can modulate immune cell differentiation through the activation of NF-${\kappa}B$, and this potentially affects the immune inflammatory response that is mediated by cytokines.

Characterization of the NF-$textsc{k}$B Activation Induced by TR8, an Osteoclastogenic Tumor Necrosis Factor Receptor Family Member

  • Kim, Hong-Hee
    • Archives of Pharmacal Research
    • /
    • 제22권5호
    • /
    • pp.454-458
    • /
    • 1999
  • TR8 is a recently identified member of the tumor necrosis factor (TNF) receptor superfamily. TR8 seems to play important roles in bone metabolism as stimulation of this receptor with its ligand, TL8 or osteoclast differentiation factor (ODF), induced the differentiation and activation of osteoclasts. Despite its important biological functions, the biochemcial events ensuing form TR8 activation have not been revealed in detail. Most of TNF receptor family proteins provoke the activation of the NF-$textsc{k}$B transcription factor. In the present study, we examined the signaling potential of TR8 to induce NF-B activation. When overexpressed in a human embryonic kidney cell line by transient transfection, TR8 caused a strong activation of NF-$textsc{k}$B, which was further increased upon stimulation with TL8. The TR8-induced NF-B activation was abrogated by the co-expression of the TRAF6 mutnat lacking the Ring and zinc finger domains and that of the kinase-inactive mutant NIK. Taken together, our study suggests that the presence of intact TRAF6 and the kiase activity of NIK may be essential for TR8 to induce NF-$textsc{k}$B activation.

  • PDF

NF-${\kappa}B$ Activation in T Helper 17 Cell Differentiation

  • Park, Sang-Heon;Cho, Gabi;Park, Sung-Gyoo
    • IMMUNE NETWORK
    • /
    • 제14권1호
    • /
    • pp.14-20
    • /
    • 2014
  • CD28/T cell receptor ligation activates the NF-${\kappa}B$ signaling cascade during CD4 T cell activation. NF-${\kappa}B$ activation is required for cytokine gene expression and activated T cell survival and proliferation. Recently, many reports showed that NF-${\kappa}B$ activation is also involved in T helper (Th) cell differentiation including Th17 cell differentiation. In this review, we discuss the current literature on NF-${\kappa}B$ activation pathway and its effect on Th17 cell differentiation.

Hepatitis Delta Virus Large Antigen Sensitizes to TNF-α-Induced NF-κB Signaling

  • Park, Chul-Yong;Oh, Sang-Heun;Kang, Sang Min;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.49-55
    • /
    • 2009
  • Hepatitis delta virus (HDV) infection causes fulminant hepatitis and liver cirrhosis. To elucidate the molecular mechanism of HDV pathogenesis, we examined the effects of HDV viral proteins, the small hepatitis delta antigen (SHDAg) and the large hepatitis delta antigen (LHDAg), on $NF-{\kappa}B$ signaling pathway. In this study, we demonstrated that $TNF-{\alpha}-induced$ $NF-{\kappa}B$ transcriptional activation was increased by LHDAg but not by SHDAg in both HEK293 and Huh7 cells. Furthermore, LHDAg promoted TRAF2-induced $NF-{\kappa}B$ activation. Using coimmunoprecipitation assays, we demonstrated that both SHDAg and LHDAg interacted with TRAF2 protein. We showed that isoprenylation of LHDAg was not required for the increase of $NF-{\kappa}B$ activity. We further showed that only LHDAg but not SHDAg increased the $TNF-{\alpha}-mediated$ nuclear translocation of p65. This was accomplished by activation of $I{\kappa}B_{\alpha}$ degradation by LHDAg. Finally, we demonstrated that LHDAg augmented the COX-2 expression level in Huh7 cells. These data suggest that LHDAg modulates $NF-{\kappa}B$ signaling pathway and may contribute to HDV pathogenesis.

The Study of $NF-{\kappa}B(P50)$ Suppression mechanism with main Component of Bee Venom and Melittin on Human Synoviocyte

  • Kwon, Soon-Jung;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제22권2호
    • /
    • pp.123-132
    • /
    • 2005
  • Melittin,cationic 26-amino acid, is the principal component of the bee venom (BV) which has been used for treatment of inflammatory disease such as arthritis rheumatism NF-kB is activated by subsequent release of inhibitory IkB via activation of a multisubunit IkB kinase (IKK). We previously found that melittin bind to the sulfhydryl group of p50, a subunit of NF-kB. Since sulfhydryl group is present in kinase domain of IKKa and IKKb, melittin could modify IKK activity by protein-protein interaction. We therefore examined effect of melittin on IKK activities in sodium nitroprusside (SNP)-stimulated synoviocyte obtained from RA patients. Melittin suppressed the SNP-induced release of IkB resulted in inhibition of DNA binding activity of NF-kB and NF-kB-dependent luciferase activity. Consistent with the inhibitory effect on NF-kB activation, IKKa and IKKb activities were also suppressed by melittin. Surface plasmon resonance analysis realized that melitin binds to IKKa $(Kd\;=\;1.34{\times}10-9M)$ and IKKb$(Kd\;=\;1.0{\times}10-9M)$. Inhibition of IKKa and IKKb resulted in reduction of the SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of melittin on the IKKs activities, binding affinity of melittin to IKKs, and NO and PGE2 generation were blocked by addition of reducing agents dithiothreitol and glutathione. In addition, melittin did not show inhibitory effect in the transfected Synoviocytes with plasmid carrying dominant negative mutant IKKa (C178A) and IKKb (C179A). These results demonstrate that melittin directly binds to sulfhydryl group of IKKs resulting in IkBrelease, thereby inhibits activation of NF-kB and expression of genes involving in the inflammatory responses.

  • PDF

저산소증과 NF-${\kappa}B$의 항암제내성과의 연관성 고찰 (Hypoxia and NF-${\kappa}B$; The Relation to Chemoresistance)

  • 윤성우
    • 대한암한의학회지
    • /
    • 제15권1호
    • /
    • pp.119-128
    • /
    • 2010
  • 항암치료는 현재 암환자의 주요한 치료임에도 불구하고 항암제내성과 같은 문제점을 가지고 있다. 약물내성은 다양한 기전에 의해 발생하는데 수송단백질의 과발현, 비독성화발현, 손상유전자의 복구, 세포사멸신호의 변화, STAT-3와 NF-${\kappa}B$의 발현 등이 포함된다. 암세포는 저산소환경에서 발생하며 일반세포에 비해 무산소해당에 상대적 의존도가 높고 이는 암세포의 성장과 전이를 촉진하는 인자가 된다. 항암제가 효과를 내기 위해서는 산소가 필요한데 저산소환경은 이를 방해하며 또한 유전자의 불안정화로 인해 약물내성이 유도된다. NF-${\kappa}B$는 주요 전사인자 중 하나로서 각종 염증과 암에서 지속적으로 활성화되며 암세포의 변화, 증식, 침윤, 전이에 관여한다. 환경적 스트레스 등과 대부분의 항암약제들이 NF-${\kappa}B$를 활성화시키며 임상적으로도 암환자의 생존과 연관된 중요한 예후인자이다. NF-${\kappa}B$의 발현은 항암제로 인한 암세포의 자멸을 회피하게 만들고 수송단백질을 활성화시켜 항암제내성을 유도한다. 강황, 적포도, 고추, 건칠 등 다양한 천연물에서 NF-${\kappa}B$를 억제시키는 효능이 발견되었으며 이는 항암제내성을 억제시키고 항암제의 효과를 증대시킨다. 저산소환경의 개선과 NF-${\kappa}B$의 억제는 상호연관성을 가지고 있으며 항암제내성의 개선뿐만 아니라 암치료제 개발의 새로운 연구목표가 될 수 있다.

  • PDF