• Title/Summary/Keyword: $NF-{\kappa}B$ binding site

Search Result 22, Processing Time 0.021 seconds

NF-${\kappa}B$ Activation and cIAP Expression in Radiation-induced Cell Death of A549 Lung Cancer Cells (A549 폐암세포주의 방사선-유도성 세포사에서 NF-${\kappa}B$ 활성화 및 cIAP 발현)

  • Lee, Kye Young;Kwak, Shang-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.488-498
    • /
    • 2003
  • Background : Activation of the transcription factor NF-${\kappa}B$ has been shown to protect cells from tumor necrosis factor-alpha, chemotherapy, and radiation-induced apoptosis. NF-${\kappa}B$-dependent cIAP expression is a major antiapoptotic mechanism for that. NF-${\kappa}B$ activation and cIAP expression in A549 lung cancer cells which is relatively resistant to radiation-induced cell death were investigated for the mechanism of radioresistance. Materials and methods : We used A549 lung cancer cells and Clinac 1800C linear accelerator for radiation. Cell viability test was done by MTT assay. NF-${\kappa}B$ activation was tested by luciferase reporter gene assay, Western blot for $I{\kappa}B{\alpha}$ degradation, and electromobility shift assay. For blocking ${\kappa}B$, MG132 and transfection of $I{\kappa}B{\alpha}$-superrepressor plasmid construct were used. cIAP expression was analyzed by RT-PCR and cIAP2 promoter activity was performed using luciferase assay system. Results : MTT assay showed that cytotoxicity even 48 hr after radiation in A549 cells were less than 20%. Luciferas assay demonstrated weak NF-${\kappa}B$ activation of $1.6{\pm}0.2$ fold compared to PMA-induced $3.4{\pm}0.9$ fold. Radiation-induced $I{\kappa}B{\alpha}$ degradation was observed in Western blot and NF-${\kappa}B$ DNA binding was confirmed by EMSA. However, blocking NF-${\kappa}B$ using MG132 and $I{\kappa}B{\alpha}$-superrepressor transfection did not show any sensitizing effect for radiation-induced cell death. The result of RT-PCR for cIAP1 & 2 expression was negative induction while TNF-${\alpha}$ showed strong expression for cIAP1 & 2. The cIAP2 promoter activity also did not show any change compared to positive control with TNF-${\alpha}$. Conclusion : We conclude that activation of NF-${\kappa}B$ does not determine the intrinsic radiosensitivity of cancer cells, at least for the cell lines tested in this study.

NF-${\kappa}B$ Dependent IL-8 Secretion from Lung Epithelial Cells Induced by Peripheral Blood Monocytes Phagocytosing Mycobacterium Tuberculosis (결핵균을 탐석한 말초혈액단핵구 배양상층액에 의해 유도되는 폐상피세포주에서의 NF-${\kappa}B$ 의존성 IL-8 분비기전)

  • Park, Jae-Seuk;Jee, Young-Koo;Choi, Eun-Kyong;Kim, Keun-Youl;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.4
    • /
    • pp.315-324
    • /
    • 2001
  • Background : IL-8 is a potent chemotactic cytokine that plays an important role in the host defense mechanism against M. tuberculosis by recruiting inflammatory cells to the site of the infection. Lung epithelial cells, as well as alveolar macrophages are known to produce IL-8 in response to M. tuberculosis. IL-8 gene expression is mainly regulated on the level of transcription by NF-${\kappa}B$. This study investigated whether or not A549 cells produce IL-8 in NF-${\kappa}B$ dependent mechanism in response to macrophages phagocytosing M. tuberculosis. Methods : Peripheral blood monocytes that were obtained from healthy donors were cultured for 24 h with M. tuberculosis and a conditioned medium(CoMTB) was obtained. As a negative control, the conditioned medium without M. tuberculosis (CoMCont) was used. A549 cells were stimulated with M. tuberculosis, CoMCont and CoMTB and the IL-8 concentration in the culture media was measured by ELISA. The CoMTB induced IL-8 mRNA expression in the A549 cells was evaluated using RT-PCR, and CoMTB induced $I{\kappa}B{\alpha}$ degradation was measured using western blot analysis. CoMTB induced nuclear translocation and DNA binding of NF-${\kappa}B$ was also examined using an electrophoretic mobility shift assay(EMSA), and the CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity was measured using a luciferase reporter gene assay. Results : CoMTB induced IL-8 production by A549 cells($46.8{\pm}4.8\;ng/ml$) was higher than with direct stimulation with M. tuberculosis ($6.8{\pm}2.9\;ng/ml$). CoMTB induced IL-8 mRNA expression increased after 2 h of stimulation and was sustained for 24 h. $I{\kappa}B{\alpha}$ was degraded after 10 min of CoMTB stimulation and reappeared by 60 min. CoMTB stimulated the nuclear translocation and DNA binding of NF-${\kappa}B$. The CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity($13.6{\pm}4.3$ times control) was higher than either CoMCont($2.0{\pm}0.6$ times control) or M. tuberculosis ($1.4{\pm}0.6$ times control). Conclusion : A conditioned medium of peripheral blood monocytes phagocytosing M. tuberculosis stimulates NF-${\kappa}B$ dependent IL-8 production by the lung epithelial cells.

  • PDF

Effects of Chiyangtang on Helicobacter pylori-induced increase of cytokines gene expression (Helicobacter pylori 감염에 의한 Cytokines 유전자 발현에 대한 치양탕(治瘍湯)의 효과)

  • Lee, Hyung-Ju;Won, Jin-Hee;Moon, Goo;Moon, Seok-Jae;Park, Dong-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 1999
  • Effects of Chiyangtang(CYT) on H. pylori-induced increase of interleukin 8 and interleukin 1 gene expression was studied in Kato Ⅲ cell line, a human stomach epithelial cell line. Treatment of H. pylori to the cell culture signifant!y increased IL-8 and IL-1 mRNA synthesis. When CYT was added along with H. pylori, the increase of IL-8 and IL-1 mRNA synthesis was blocked. Activation of transcription factor $NF-{\kappa}B$ and AP-1 which were known to important in IL-8 and IL-1 gene expression was also studied using chloramphenicol acetyltransferase(CAT) assay. Treatment of H. pylori increased activation of $NF-{\kappa}B$ and AP-l and CYT effectively protected the activation. Electrophoretic mobility shift assay suggested that CYT effectively inhibited DNA binding of $NF-{\kappa}B$ and AP-l to their cognate site. These results suggested that CYT could prevent stomach diseases through the down regulation of IL -8 and IL-l gene expression which might be mediated by the inhibition of $NF-{\kappa}B$ and AP-1 activities and their binding to DNA.

  • PDF

Roles of TLR-4 and NF-κB in Interleukin-6 Expression Induced by Heat Shock Protein 90 in Vascular Smooth Muscle Cells (혈관평활근세포에서 HSP90에 의한 IL-6 발현에 TLR-4와 NF-κB의 작용)

  • Rhim, Byung-Yong;Kim, Kang-Seong;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1637-1643
    • /
    • 2008
  • This study has investigated whether extracellular HSP90 predisposes vascular smooth muscle cells (VSMCs) to pro-inflammatory phenotype. Exposure of rat aortic smooth muscle cells to HSP90 not only enhanced IL-6 release but also profoundly induced IL-6 transcript via promoter activation. HSP90-induced IL-6 promoter activation was suppressed by dominant-negative forms of Toll-like receptor (TLR)-4 and myeloid differentiation factor 88 (MyD88), but not by dominant-negative-forms of TLR-3 and TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF). Curcumin, which inhibits dimerization of TLR-4, also attenuated the IL-6 induction by HSP90. Mutation at the NF-${\kappa}B$- or C/EBP-binding site in the IL-6 promoter region suppressed the promoter activation in response to HSP90. The gene delivery of $I{\kappa}B$ using recombinant adenoviruses and treatment with resveratrol, which inhibit NF-${\kappa}B$ activity, attenuated the HSP90-induced IL-6 release from VSMCs. The present study proposes that extracellular HSP90 would contribute to inflammatory reaction in the stressed vasculature by inducing IL-6 in VSMCs, and that TLR-4 and NF-${\kappa}B$ would play active roles in the process.

Alleviation of Ultraviolet-B Radiation-Induced Photoaging by a TNFR Antagonistic Peptide, TNFR2-SKE

  • Lee, Kyoung-Jin;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.151-160
    • /
    • 2019
  • Ultraviolet (UV) radiation of the sunlight, especially UVA and UVB, is the primary environmental cause of skin damage, including topical inflammation, premature skin aging, and skin cancer. Previous reports show that activation of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) in human skin fibroblasts and keratinocytes after UV exposure induces the expression and release of proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), and subsequently leads to the production of matrix metalloproteases (MMPs) and growth factor basic fibroblast growth factor (bFGF). Here, we demonstrated that TNFR2-SKEE and TNFR2-SKE, oligopeptides from TNF receptor-associated factor 2 (TRAF2)-binding site of TNF receptor 2 (TNFR2), strongly inhibited the interaction of TNFR1 as well as TNFR2 with TRAF2. In particular, TNFR2-SKE suppressed UVB- or $TNF-{\alpha}$-induced nuclear translocalization of activated $NF-{\kappa}B$ in mouse fibroblasts. It decreased the expression of bFGF, MMPs, and COX2, which were upregulated by $TNF-{\alpha}$, and increased procollagen production, which was reduced by $TNF-{\alpha}$. Furthermore, TNFR2-SKE inhibited the UVB-induced proliferation of keratinocytes and melanocytes in the mouse skin and the infiltration of immune cells into inflamed tissues. These results suggest that TNFR2-SKE may possess the clinical potency to alleviate UV-induced photoaging in human skin.

Glycated Serum Albumin Induces Interleukin-6 Expression in Vascular Smooth Muscle Cells (혈관평활근세포에서 glycated albumin에 의한 interleukin-6 증가에 관여하는 인자에 대한 연구)

  • Baek, Seung-Il;Rhim, Byung-Yong;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • Diabetes mellitus is associated with vascular complications. Diabetic patients exhibit high levels of glycated adducts in serum compared to non-diabetic individuals. The aim of this study was to investigate whether extracellular glycated albumin (GA) predisposes vascular smooth muscle cells (VSMCs) to pro-inflammatory phenotype. Exposure of rat aortic smooth muscle cells (AoSMCs) to GA not only enhanced interleukin-6 (IL-6) release but also activated promoter activity of the IL-6 gene. GA-induced IL-6 promoter activation was suppressed by dominant-negative forms of Toll-like receptor (TLR)-4 and myeloid differentiation factor 88 (MyD88), but not by dominant-negative-forms of TLR-2 and TIR-domain-containing adapter-inducing interferon-$\beta$ (TRIF). Extracellular signal-regulated kinase (ERK) inhibition and diphenyleneiodium (DPI) also attenuated IL-6 induction by GA. Mutation at the nuclear factor-${\kappa}B$ (NF-${\kappa}B$)-binding site in the IL-6 promoter region suppressed promoter activation in response to GA. The present study proposes that GA would contribute to inflammatory reaction in the stressed vasculature by inducing IL-6 in VSMCs, and that TLR-4, EKR, and NF-${\kappa}B$ play active roles in the process.

Roles of ERK and NF-${\kappa}$ B in Interleukin-8 Expression in Response to Heat Shock Protein 22 in Vascular Smooth Muscle Cells

  • Kang, Seung-Hun;Lee, Ji-Hyuk;Choi, Kyung-Ha;Rhim, Byung-Yong;Kim, Koan-Hoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.171-176
    • /
    • 2008
  • Heat shock proteins (HSPs) serve as molecular chaperones and play a role in cell protection from damage in response to stress stimuli. The aim of this article is to investigate whether HSP22 affects IL-8 expression in vascular smooth muscle cells (VSMCs), and which cellular factors are involved in the HSP-mediated IL-8 induction in that cell type in terms of mitogen activated protein kinase (MAPK) and transcription element. Exposure of aortic smooth muscle cells (AoSMCs) to HSP22 not only enhanced IL-8 release but also induced IL-8 transcript via promoter activation. HSP22 activated ERK and p38 MAPK in AoSMCs. HSP22-induced IL-8 release was inhibited by U0126, but not by SB202190. A mutation in the IL-8 promoter region at the binding site of NF-${\kappa}$ B, but not AP-1 or C/EBP, impaired promoter activation in response to HSP22. Delivery of I ${\kappa}$ B, but not dominant negative c-Jun, lowered HSP22-induced IL-8 release from AoSMCs. These results suggest that HS P22 induces IL-8 in VSMCs via ERK1/2, and that transcription factor NF-kB may be required for the HSP22-induced IL-8 up-regulation.

Valproic Acid Induces Transcriptional Activation of Human GD3 Synthase (hST8Sia I) in SK-N-BE(2)-C Human Neuroblastoma Cells

  • Kwon, Haw-Young;Dae, Hyun-Mi;Song, Na-Ri;Kim, Kyoung-Sook;Kim, Cheorl-Ho;Lee, Young-Choon
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this study, we have shown the transcriptional regulation of the human GD3 synthase (hST8Sia I) induced by valproic acid (VPA) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in VPA-stimulated SK-N-BE(2)-C cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-${\kappa}B$, functions as the VPA-inducible promoter of hST8Sia I in SK-N-BE(2)-C cells. Site-directed mutagenesis and electrophoretic mobility shift assay indicated that the NF-${\kappa}B$ binding site at -731 to -722 was crucial for the VPA-induced expression of hST8Sia I in SK-N-BE(2)-C cells. In addition, the transcriptional activity of hST8Sia I induced by VPA in SK-N-BE(2)-C cells was strongly inhibited by SP600125, which is a c-Jun N-terminal kinase (JNK) inhibitor, and $G{\ddot{O}}6976$, which is a protein kinase C (PKC) inhibitor, as determined by RT-PCR (reverse transcription-polymerase chain reaction) and luciferase assays. These results suggest that VPA markedly modulated transcriptional regulation of hST8Sia I gene expression through PKC/JNK signal pathways in SK-N-BE(2)-C cells.

Transcriptional Regulation of Human GD3 Synthase (hST8Sia I) by Fenretinide in Human Neuroblastoma SH-SY-5Y Cells (사람 신경모세포종 세포주 SH-SY5Y에서 fenretinide에 의한 GD3합성효소(hST8Sia I)의 전사조절기작)

  • Kang, Nam-Young;Kwon, Haw-Young;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1332-1338
    • /
    • 2010
  • To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in FenR-induced SH-SY5Y cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene showed that the -1146 to -646 region functions as the FenR-inducible promoter of hST8Sia I in SH-SY5Y cells. Site-directed mutagenesis indicated that the NF-&B binding site at -731 to -722 was crucial for the FenR-induced expression of hST8Sia I in SH-SY5Y cells. To investigate which signal transduction pathway was involved in FenR-stimulated induction of hST8Sia I in SH-SY5Y cells, we performed Western blot analysis using phospho-specific antibodies in order to measure their degree of regulatory phosphorylation. Phosphorylations of AKT and RelA (p65) subunit of NF-${\kappa}B$ were significantly elevated in cytosolic and nuclear fractions of FenR-stimulated SH-SY5Y cells, respectively, than in control or DMSO-treated SH-SY5Y cells. These results suggest that FenR induce transcriptional up-regulation of hST8Sia I gene expression through translocation of RelA (p65) subunit of NF-${\kappa}B$ to nucleus by AKT signal pathway in SH-SY5Y cells.

Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells (All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향)

  • Kim, Ki-Hyung;Park, Sang-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.