• Title/Summary/Keyword: $NF-{\kappa}B$ activation

Search Result 834, Processing Time 0.028 seconds

Anti-Inflammatory and Antioxidant Effect of Astaxanthin Derived from Microalgae (미세조류 유래 astaxanthin의 항염증 및 항산화 효과)

  • Kwak, Tae-Won;Cha, Ji-Young;Lee, Chul-Won;Kim, Young-Min;Yoo, Byung-Hong;Kim, Sung-Gu;Kim, Jong-Myoung;Park, Seong-Ha;An, Won-Gun
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1377-1384
    • /
    • 2011
  • Astaxanthin (ATX) is a red-orange carotenoid pigment that occurs naturally in a wide variety of living organisms. In this study we investigated the inhibitory effects of ATX on the induction of inducible nitric oxide synthase (iNOS), nitric oxide (NO), proinflammatory cytokines, nuclear factor-kappa B(NF-${\kappa}B$) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In addition, we tested the superoxide radical scavenging activity of ATX by scavenging assay. iNOS and NF-${\kappa}B$ expressions were determined by immunoblot analysis. Interleukin (IL)-6 and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) were assayed by ELISA. NO production was monitored by measuring the amount of nitrite. ROS was examined by using the 2', 7'-Dichlorodihydrofluorescin diacetate (DCFH-DA) method. At a concentration of 100 ${\mu}M$, ATX inhibited the expression level of LPS-induced NF-${\kappa}B$, as well as the production of LPS-induced NO and proinflammatory cytokines (IL-6 and TNF-${\alpha}$), by suppressing iNOS expression. In particular, the maximal inhibition rate of IL-6 and TNF-${\alpha}$ production by ATX (100 ${\mu}M$) was 65.2----- and 21.2-----, respectively. In addition, ATX inhibited the LPS-induced transcriptional activity of NF-${\kappa}B$, and this was associated with suppressing the translocations of NF-${\kappa}B$ from the cytosol to the nucleus. Moreover, at various concentrations (25-100 ${\mu}M$), ATX inhibited the intracellular level of ROS. At a concentration of 5 mg/ml, the superoxide radical scavenging activity of ATX was 1.33 times higher than ${\alpha}$-tocopherol of the same concentration. These results showed that ATX inhibited the expression of iNOS and the production of NO and proinflammatory cytokines resulting from ROS production and NF-${\kappa}B$ activation in macrophages. Furthermore, ATX was found to be more effective in superoxide radical scavenging activities compared to ${\alpha}$-tocopherol. These findings are expected to strengthen the position of ATX as anti-inflammatory medicine and antioxidant.

Effect of Hot Water Extract from Scutellaria barbata on the Macrophages Activated by Lipopolysaccharide (반지련 (Scutellaria barbata D. Don) 추출물이 lipopolysaccharide에 의해 활성화된 대식세포에 미치는 영향)

  • Shen, Ting;Lee, Yong-Jin;Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.313-319
    • /
    • 2008
  • Scutellaria barbata was examined to evaluate its modulatory effects on the functional activation of macrophages under lipopolysaccharide (LPS) treatment. To do this, hot water extract (Sb-HWE) was prepared from Scutellaria barbata and several inflammatory parameters such as nitric oxide (NO) production, phagocytosis, reactive oxygen species (ROS) determination and intracellular signaling pathway were selected to be tested. Sb-HWE strongly blocked NO production in LPS-activated RAW264.7 cells in a dose-dependent manner. However, it did not suppress inducible NO synthase (iNOS). In agreement, Sb-HWE did not diminish inflammatory signaling composed of NF-${\kappa}B$ and its upstream activation signaling enzymes such as Akt and $I{\kappa}B{\alpha}$. Sb-HWE protected RAW264.7 cells from LPS-induced cytotoxicity up to 80% at 400\;{\mu}g/ml$. Furthermore, this extract blocked phagocytic uptake of FITC-dextran, while sodium nitroprusside (SNP)-induced ROS generation in RAW264.7 cells was not decreased. Therefore, our data suggest that Sb-HWE may have differential immunoregulatory function depending on macrophage-mediated immune responses.

Inhibitory Effect of Mori Ramulus on Oxidative Stress Induced by High Glucose in LLC-$PK_1$ Cells (고농도 포도당에 노출된 마우스 신장상피세포에서 상지(桑枝)의 산화 스트레스 억제 효과)

  • Jang, Soo-Young;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.56-67
    • /
    • 2011
  • Objectives : Recent etiological studies show that oxidative stress might play a major role in the diabetes and its complications. Mori Ramulus (MR) has been known to have antioxidative, anti-inflammatory and antidiabetic effects. The methanol extract of MR was tested for its effectiveness in LLC-PK1 cells exposed to high glucose. Methods : The cytoprotective effect of MR was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antioxidative effect was measured in terms of generation amount of ${\cdot}O_2^-$ by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), NO by 4,5-diaminofluorescein (DAF-2), $ONOO^-$ by dihydrorhodamine 123 (DHR 123) in the high glucose -treated LLC-$PK_1$ cells. Western blotting was performed using anti-AGE, anti-RAGE, anti-MAPKs(ERK1/2, JNK, p38), anti-PI3K, anti-Akt, and anti-NF-${\kappa}$B (p50, p65) respectively. Results : MR extract reduced cell death and inhibited the generation of ${\cdot}O_2^-$, NO, $ONOO^-$ in the high glucose-treated LLC-$PK_1$ cells. MR inhibited the expression of AGE, RAGE, MAPKs, PI3K, and Akt by means of decreasing NF-${\kappa}$B activation. MR also inhibited NF-${\kappa}$B activation itself. Conclusions : These results indicate MR has cytoprotective, antioxidative, and anti-inflammatory effects. Therefore it is suggested that MR might prevent and cure diabetes and its complications.

Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells

  • Choi, Yong-Jun;Kwak, Eun-Bee;Lee, Jae-Won;Lee, Yong-Suk;Cheong, Il-Young;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Kwon, Yong-Soo;Chun, Wan-Joo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.195-200
    • /
    • 2011
  • Neuronal cell death is a common characteristic feature of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases. In the present study, docosyl cafferate (DC), a derivative of caffeic acid, was isolated from Rhus verniciflua and its protective effects on tBHP-induced neuronal cell death were examined in SH-SY5Y human neuroblastoma cells. Pretreatment of DC significantly attenuated tBHP-induced neuronal cell death in a concentration-dependent manner. DC also significantly suppressed tBHP-induced caspase-3 activation. In addition, DC restored tBHP-induced depletion of intracellular Bcl-2, an anti-apoptotic member of the Bcl-2 family. Furthermore, DC significantly suppressed tBHP-induced degradation of IKB, which retains $NF-{\kappa}B$ in the cytoplasm, resulting in the suppression of nuclear translocation of $NF-{\kappa}B$ and its subsequent activation. Taken together, the results clearly demonstrate that DC exerts its neuroprotective activity against tBHP-induced oxidative stress through the suppression of nuclear translocation of $NF-{\kappa}B$.

Immuno-Modulatory Activities of Polysaccharides Separated from Jubak in Macrophage Cells (주박(酒粕)에서 분리된 다당류의 대식세포 면역조절 활성)

  • Park, Woo-Young;Sung, Nak-Yun;Byun, Eui-Hong;Oh, Kwang-Hoon;Byun, Myung-Woo;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.1079-1083
    • /
    • 2015
  • Activating macrophage cells play an important role in the host immune defense system. In this paper, immuno-modulatory activities of polysaccharides separated from Jubak (JPS) in macrophage cells were investigated. Immuno-modulatory activities were estimated based on cell proliferation, nitric oxide (NO) and cytokine production, degree of mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-${\kappa}B$ phosphorylation in RAW264.7 macrophage cells. JPS (62.5 to $250{\mu}g/mL$) did not induce a cytotoxic event. Additionally, NO and proinflammatory cytokines (tumor necrosis factor-${\alpha}$ and interleukin-6) production significantly increased in a dose-dependent manner. Similarly, phosphorylation of MAPKs and NF-${\kappa}B$ increased upon JPS treatment. Therefore, our results suggest that polysaccharides separated from Jubak can induce macrophage activation through MAPK and NF-${\kappa}B$ signaling and induction of Th1 polarization.

Compound K Rich Fractions Regulate NF-κB-dependent Inflammatory Responses and Protect Mice from Endotoxin-induced Lethal Shock

  • Yang, Chul-Su;Yuk, Jae-Min;Ko, Sung-Ryong;Cho, Byung-Goo;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.315-323
    • /
    • 2008
  • In the previous studies, we isolated the compound K rich fractions (CKRF) and showed that CKRF inhibited Toll-like receptor (TLR) 4- or TLR9-induced inflammatory signaling. To extend our previous studies,1) we investigated the molecular mechanisms of CKRF in the TLR4-associated signaling via nuclear factor (NF)-${\kappa}B$, and in vivo role of CKRF for induction of tolerance in lipopolysaccharide (LPS)-induced septic shock. In murine bone marrow-dervied macrophages, CKRF significantly inhibited the induction of mRNA expression of proinflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase. In addition, CKRF significantly attenuated the transcriptional activities of TLR4/LPS-induced NF-${\kappa}B$. Nuclear translocation of NF-${\kappa}B$ in response to LPS stimulation was significantly abrogated by pre-treatment with CKRF. Furthermore, CKRF inhibited the recruitment of p65 to the interferon-sensitive response element flanking region in response to LPS. Finally, oral administration of CKRF significantly protected mice from Gram-negative bacterial LPS-induced lethal shock and inhibited systemic inflammatory cytokine levels. Together, these results demonstrate that CKRF modulates the TLR4-dependent NF-${\kappa}B$ activation, and suggest a therapeutic role for Gram-negative septic shock.

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

The Neuroprotective Mechanism of Sunghyangjunggisan Water Extracts on Apoptosis of PC 12 Cell (PC 12 세포의 Apoptosis에 대한 성향정기산의 방어효과 및 작용기전 연구)

  • 최철원;이인;이기상;조남수;문병순
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • Objectives: Sunghyangjunggisan (SHJS) is a commonly prescribed drug with a wide neuropharmacological spectrum. The water extracts of SHJS were found to be protective against neurotoxicity elicited by deprivation of serum and glucose. Methods: The morphological examination and Hoechst staining of nucleus also clearly showed that the extracts attenuated the cell shrinkage, membrane blebbing, representing typical neuronal apoptotic phenomena and nucleosome-sized fragmentation under the microscope in PC 12 rat pheochromocytoma cells. Results: Activation of protein kinase A (PKA) with dibutyl-cAMP and forskolin also protected during glucose deprivation, although it was not additive with the effect provided by phorbol ester. Interestingly, treatment with the protein kinase A inhibitor, KT5720, was not neuroprotective in the presence of SHJS. Electrophoretic mobility shift assays were used to characterize the neuroprotective binding of nuclear proteins to consensus sequences for AP-l, nuclear factor kappa B ($NF-{\kappa}B$) after glucose deprivation. When PC 12 cells are induced to undergo apoptosis by serum deprivation, AP-l and $NF-{\kappa}B$ DNA binding activity transiently increases to a slight degree. This stimulation is blocked by the water extracts of SHJS. The site of action of the drugs appeared to involve specific inhibition of AP-1 and nuclear factor kB binding activity. Conclusions: Taken together, these results suggested the possibility that the extracts of SHJS might provide a neurotrophic-like activity in PC 12 cells.

  • PDF

In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng

  • Hossen, Muhammad Jahangir;Hong, Yong Deog;Baek, Kwang-Soo;Yoo, Sulgi;Hong, Yo Han;Kim, Ji Hye;Lee, Jeong-Oog;Kim, Donghyun;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Background: BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods: We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-${\beta}$ (TRIF), to measure the activation of nuclear factor (NF)-${\kappa}B$ and interferon regulatory factor 3 (IRF3). Results: BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-${\beta}$ and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-${\kappa}B$ (p50 and p65). This extract inhibited the upregulation of NF-${\kappa}B$-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of ${\kappa}B$ ($I{\kappa}B{\alpha}$) kinase ($IKK{\beta}$), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-${\kappa}B$ pathway by blocking $IKK{\beta}$ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/$IKK{\beta}$/TBK1 overexpression strategy. Conclusion: Overall, our data suggest that the suppression of $IKK{\beta}$ and TBK1, which mediate transcriptional regulation of NF-${\kappa}B$ and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.

Anti-inflammatory Effects of Ethanol Extract of Korean Medicinal Plants at Hwaak Mountain in LPS-induced RAW 264.7 Macrophages

  • Kang, Yun-Mi;Jeon, Eun-jin;Chung, Kyung-Sook;Cheon, Se-Yun;Park, Jong Hyuk;Han, Yoo-Chang;An, Hyo-Jin
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.25-32
    • /
    • 2017
  • Objectives : This study was conducted to investigate candidate materials as anti-inflammatory agent from extracts of Korean medicinal plants in Hwaak mountain. Ligustrum obtusifolium (LO) is a Korea medicinal plants that commonly used for robustness and hemostasis. It has been reported that LO has exhibited anti-ischemic, anti-oxidative, anti-hypolipidemic, anti-tumor and hypoglycemic effects. However, LO has not been previously reported to have an anti-inflammatory effect. Therefore, we have evaluated the anti-inflammatory effects of LO and its underlying molecular mechanisms in LPS-induced RAW 264.7 macrophages. Methods : Cell viability was determined by MTT assay in RAW 264.7 macrophages. Nitric Oxide (NO) was measured with Griess reagent and pro-inflammatory cytokines were detected by ELISA in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and p65 subunit of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) were determined by Western blot analysis. Results : Among 15 extracts of Korean medicinal plants tested, Ligustrum obtusifolium (LO) showed the inhibition of NO production without cytotoxicity. LO reduced the expression levels of iNOS and COX-2 proteins in LPS-simulated RAW 264.7 macrophages in dose-dependent manner. Consistent with these data, LO inhibited the productions of $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$ in LPS-simulated RAW 264.7 macrophages. Furthermore, LO attenuated the LPS-induced nuclear translocation of p65 $NF-{\kappa}B$ in RAW 264.7 macrophages involving suppression of $NF-{\kappa}B$ activation. Conclusions : Taken together, these results suggest that the anti-inflammatory effects of LO is associated with regulation of inflammatory mediators via inhibition of $NF-{\kappa}B$ activation in LPS-treated RAW 264.7 macrophages.