• 제목/요약/키워드: $NF{\kappa}B$

검색결과 1,685건 처리시간 0.038초

Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish

  • Jeong, Jin-Woo;Cha, Hee-Jae;Han, Min Ho;Hwang, Su Jung;Lee, Dae-Sung;Yoo, Jong Su;Choi, Il-Whan;Kim, Suhkmann;Kim, Heui-Soo;Kim, Gi-Young;Hong, Su Hyun;Park, Cheol;Lee, Hyo-Jong;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.146-156
    • /
    • 2018
  • Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$), and cytokines including tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$ in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of $NF-{\kappa}B$ p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.

통합수자원 모델 연계 파일럿 시스템 (WaterRing) 개발 (Development of Model Linking Pilot System (WaterRing) for IWRM)

  • 이성학;김승;강재원;이미연
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.2024-2028
    • /
    • 2007
  • 우리나라의 물관련 이슈는 수자원뿐만 아니라 사회, 경제 환경 등의 범위까지 확대되어 복합적이며, 기존 방법론과 기술만으로는 해결에 어려움이 있다. 따라서 새로운 기술적/방법론적 도구 개발의 필요성에 따라 통합수자원관리가 하나의 방법으로 받아들여지고 있다. 통합수자원관리는 지속가능한 수자원관리를 목표로하며, 물과 이와 관련 다양한 요소를 고려하는 통합적인 방법론이다. 그러므로 의사결정에 있어 전체론적인 접근이 필요하며, 세부적인 요소와 요소간의 연관관계를 파악하는 것이 중요하다. 이를 위하여 본 연구에서는 통합수자원관리의 기반 도구 중의 하나인 통합수자원관리 모델링 환경인 WaterRing 시범시스템을 개발하였다. WaterRing은 모델연계에 있어 필수적인 표준성, 사용편의성 및 모델공유를 제공하며, 모델코드 자체보다 모델의 개발에 많은 노력을 기울일 수 있도록 설계되었다. 따라서 수자원분야 및 다양한 분야의 모델을 연계할 수 있다. 모델의 연계를 위하여 기본모델단위를 설정하고 각각의 기본모델단위의 결합을 통하여 보다 큰 시스템으로 구성할 수 있도록 하였다. 기본모델단위는 입력/상태/출력의 세 가지 기본요소와 내부수행 루틴으로 구성되어 있다. 기본모델단위 사이의 결합을 정의하기 위하여 BPM(Business Process Management)(Arkin, 2002)와 STELLA의 모델 결합방식을 활용하였다. 기본모델단위는 독립적인 수행단위로 표준적인 입력과 출력을 수행한다. 따라서 입력과 출력의 속성이 같은 기본모델단위는 결합할 수 있다. 본 연구에서 시범적으로 개발된 수자원통합모델링환경 WaterRing은 통합수자원관리의 실현에 있어 평가, 계획에 이용될 수 있다. 그러므로 향후 시스템의 개발이 완료되면 우리나라의 통합수자원관리의 실현을 위한 기반도구로서 많은 역할이 기대된다. 홍수기에 측정된 성과를 바탕으로 고수위대의 수위-유량관계 곡선식을 개발하여야 할 것으로 판단된다. 본 연구를 통해 일부 확인된 바와 같이, 일반적인 자연하천이 아닌 감조하천의 경우는, 각각의 수위대별 유량 값의 변화가 발생하는 바 기간별 혹은 간조와 만조부를 포함하여 유량측정을 하여야 할 것으로 판단된다. 청폐화담탕(淸肺化痰湯)은 LPS로 유도된 macrophage에서 NO와 염증Cytokine 생성량을 억제하였고 murine macrophage에서 NF-${\kappa}$B 활성을 억제함으로써 iNOS와 염증Cytokine 유전자 발현을 하향조절 하였다. 이러한 청폐화담탕(淸肺化痰湯)의 항염작용으로 천식, 기관지염, 폐렴, 결핵, 산후감모 등의 호흡기 질환에 응용할 수 있으리라 사료된다.im}$5개월), 9.44${\pm}$1.05 6${\sim}$ll개월)으로 개월에 관계없이 전반적으로 유사한 비율을 나타내었다. 분획물(첨가농도 15.6 ${\mu}$g/ml)은 60%의 저해효과를 나타내면서 농도 의존적으로 그 저해효과가 컸으며 250 ${\mu}$g/ml 농도에서는 80%의 저해효과를 관찰 할 수가 있었다. 에틸아세테이트분회물의 경우 디글로로메탄 분회물에 비해 다소 낮은 저해효과를 나타내었지만 250 ${\mu}$g/ml 농도에서 약 60%의 세포독성 효과를 나타내었다. 디클로로메탄 분획물과 에틸아세테이트 분획물에 의한 면역 활성 증진 효과를 검토한 결과, 디글로로메탄 분획물은 첨가농도 1 ${\mu}$g/ml에서 94%로 Yac-1표적세포를 사멸시켰으며 에틸아세테이트 분획물도 동일 농도에서 96%의 억제효과를 나타내었다. CTLL세포를 이용

  • PDF

Agastache rugosa Leaf Extract Inhibits the iNOS Expression in ROS 17/2.8 Cells Activated with TNF-$\alpha$ and IL-$\beta$

  • Oh Hwa Min;Kang Young Jin;Kim Sun Hee;Lee Young Soo;Park Min Kyu;Heo Ja Myung;Sun Jin Ji;Kim Hyo Jung;Kang Eun Sil;Kim Hye Jung;Sea Han Geuk;Lee Jae Heun;YunChoi Hye Sook
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.305-310
    • /
    • 2005
  • It has been suggested that nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) may act as a mediator of cytokine-induced effects on bone turn-over. NO is also recognized as an important factor in bone remodeling, i.e., participating in osteoblast apoptosis in an arthritic joint. The components of Agastache rugosa are known to have many pharmacological activities. In the present study, we investigated the effects of Agastache rugosa leaf extract (ELAR) on NO production and the iNOS expression in ROS 17/2.8 cells activated by a mixture of inflammatory cytokines including TNF-$alpha$ and IL-1$\beta$. A preincubation with ELAR significantly and concentration-dependently reduced the expression of iNOS protein in ROS 17/2.8 cells activated with the cytokine mixture. Consequently, the NO production was also significantly reduced by ELAR with an IC$_{50}$ of 0.75 mg/mL. The inhibitory mechanism of iNOS induction by ELAR prevented the activation and translocation of NF-$\kappa$B (p65) to the nucleus from the cytosol fraction. Furthermore, ELAR concentration-dependently reduced the cellular toxicity induced by sodium nitroprusside, an NO-donor. These results suggest that ELAR may be beneficial in NO-mediated inflammatory conditions such as osteoporosis.

Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice

  • Shin, Eun-Ju;Shin, Seul-Mee;Kong, Hyun-Seok;Lee, Sung-Won;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Hwang, In-Kyeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제11권2호
    • /
    • pp.107-113
    • /
    • 2011
  • Background: Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM complex downregulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-$1{\beta}$ and -6) and $HIF1{\alpha}$ mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-${\kappa}B$ p65 from the cytosol in the WAT. Conclusion: Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.

커큐민에 의한 노치발현 조절에서 Sp의 역할 (Role of Sp in the Regulation of Notch1 Gene Expression by Curcumin)

  • 박선영;강용규;배윤희;김수륜;박현주;강영순;김미경;위희준;장혜옥;배문경;우재석;배수경
    • KSBB Journal
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Curcumin has diverse anticancer activities that lead to tumor growth inhibition of cancer cells and induction of apoptosis. Curcumin is involved in the regulation of multiple genes via transcription factors including NF-${\kappa}B$, STATs, AP1, and SP. Notch signaling plays critical roles in maintaining the balance between cell proliferation, differentiation and apoptosis, and thereby may contribute to the development of various cancers involving breast cancer. This study was to investigate the effects of curcumin on Notch1 gene expression and to explore the underlying mechanism. Here, we found that curcumin decreased the levels of Notch1 mRNA and protein in MDA-MB-231 human breast cancer cells, along with the downregulation of Sp family genes (Sp1, Sp2, Sp3, and Sp4). The repressive effect of curcumin on Notch1 gene transcription was confirmed by performing Notch1 promoter-driven reporter assay and three Sp-binding sites were identified on Notch1 promoter that may act as curcumin-respose elements. Moreover, treatment with mitramycin A, a specific Sp inhibitor, decreased the levels of Notch1 mRNA and protein in human breast cancer cells. Taken together, our results indicate that Notch1 gene expression is downregulated by curcumin, at least in part, through the suppression of Sp family, which may lead to apoptosis in human breast cancer cells.

$TNF{\alpha}$ Increases the Expression of ${\beta}2$ Adrenergic Receptors in Osteoblasts

  • Baek, Kyung-Hwa;Lee, Hye-Lim;Hwang, Hyo-Rin;Park, Hyun-Jung;Kwon, A-Rang;Qadir, Abdul S.;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제36권4호
    • /
    • pp.173-178
    • /
    • 2011
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional cytokine that is elevated in inflammatory diseases such as atherosclerosis, diabetes and rheumatoid arthritis. Recent evidence has suggested that ${\beta}2$ adrenergic receptor (${\beta}2AR$) activation in osteoblasts suppresses osteogenic activity. In the present study, we explored whether $TNF{\alpha}$ modulates ${\beta}AR$ expression in osteoblastic cells and whether this regulation is associated with the inhibition of osteoblast differentiation by $TNF{\alpha}$. In the experiments, we used C2C12 cells, MC3T3-E1 cells and primary cultured mouse bone marrow stromal cells. Among the three subtypes of ${\beta}AR$, ${\beta}2$ and ${\beta}3AR$ were found in our analysis to be upregulated by $TNF{\alpha}$. Moreover, isoproterenol-induced cAMP production was observed to be significantly enhanced in $TNF{\alpha}$-primed C2C12 cells, indicating that $TNF{\alpha}$ enhances ${\beta}2AR$ signaling in osteoblasts. $TNF{\alpha}$ was further found in C2C12 cells to suppress bone morphogenetic protein 2-induced alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes including Runx2, ALP and osteocalcin. Propranolol, a ${\beta}2AR$ antagonist, attenuated this $TNF{\alpha}$ suppression of osteogenic differentiation. $TNF{\alpha}$ increased the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL), an essential osteoclastogenic factor, in C2C12 cells which was again blocked by propranolol. In summary, our data show that $TNF{\alpha}$ increases ${\beta}2AR$ expression in osteoblasts and that a blockade of ${\beta}2AR$ attenuates the suppression of osteogenic differentiation and stimulation of RANKL expression by $TNF{\alpha}$. These findings imply that a crosstalk between $TNF{\alpha}$ and ${\beta}2AR$ signaling pathways might occur in osteoblasts to modulate their function.

TNBS로 유도된 만성 염증성 대장염에 대한 대장유(大腸兪) 구진약침(灸津藥鍼)의 효과 (Moxi-tar Herbal Acupuncture of BL25 Acupoint Ameliorates TNBS-Induced Colitis in Mice)

  • 백대봉;권오상;최원종;김재효;전희영;김경식;손인철
    • Korean Journal of Acupuncture
    • /
    • 제24권3호
    • /
    • pp.149-164
    • /
    • 2007
  • Objectives : Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease in the gastrointestinal tract. The sources and pathologic mechanisms of IBD are still unknown. Moreover conventional therapies for IBD are not always effective, and they often have serious side effects. The purpose of this study is to examine the effect of Moxi-tar herbal acupuncture in IBD affected mice. Methods : Mice were treated with 5 % 2, 4, 6 - trinitrobenzenesulfonic acid (TNBS) on day 1 and day 7. To assume the preemptive effect and therapeutic effect, herbal acupuncture was practiced with Moxi-tar at BL25 (Daejangsu) on day 0, day 3, and day 6. The end of day in treatment with Moxi-tar herbal acupuncture, the mortality and the inflammatory factors of the colon were measured by the various methods. Results TNBS induced high mortality but herbal acupuncture with Moxi-tar at BL25 sup-pressed the mortality caused by TNBS. TNBS induced infiltration of immune cells in all layers of the colon and increased myeloperoxygenase (MPO) activity, while the treatment with Moxi-tar herbal acupuncture at BL25 suppressed the infiltration of immune cells and the increase of MPO activity caused by TNBS to normal levels, Herbal acupuncture with Moxi-tar regulated $NF-{\kappa}B$ activity, which is an important factor for the pathogenesis of chronic colitis, and reduced the expressions of $TNF-{\alpha}$, $IL-1{\beta}$, and ICAM-1 in the colons of TNBS treated mice. Furthermore herbal acupuncture suppressed macro- and micro- colonic damages caused by TNBS. Conclusions : This study demonstrates that herbal acupuncture with Moxi-tar at BL25 isa potential preemptive and/or therapeutic method targeting the chronic IBD.

  • PDF

Immunotoxicological Effects of Aripiprazole: In vivo and In vitro Studies

  • Baek, Kwang-Soo;Ahn, Shinbyoung;Lee, Jaehwi;Kim, Ji Hye;Kim, Han Gyung;Kim, Eunji;Kim, Jun Ho;Sung, Nak Yoon;Yang, Sungjae;Kim, Mi Seon;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.365-372
    • /
    • 2015
  • Aripiprazole (ARI) is a commonly prescribed medication used to treat schizophrenia and bipolar disorder. To date, there have been no studies regarding the molecular pathological and immunotoxicological profiling of aripiprazole. Thus, in the present study, we prepared two different formulas of aripiprazole [Free base crystal of aripiprazole (ARPGCB) and cocrystal of aripiprazole (GCB3004)], and explored their effects on the patterns of survival and apoptosis-regulatory proteins under acute toxicity and cytotoxicity test conditions. Furthermore, we also evaluated the modulatory activity of the different formulations on the immunological responses in macrophages primed by various stimulators such as lipopolysaccharide (LPS), pam3CSK, and poly(I:C) via toll-like receptor 4 (TLR4), TLR2, and TLR3 pathways, respectively. In liver, both ARPGCB and GCB3004 produced similar toxicity profiles. In particular, these two formulas exhibited similar phospho-protein profiling of p65/nuclear factor $(NF)-{\kappa}B$, c-Jun/activator protein (AP)-1, ERK, JNK, p38, caspase 3, and bcl-2 in brain. In contrast, the patterns of these phospho-proteins were variable in other tissues. Moreover, these two formulas did not exhibit any cytotoxicity in C6 glioma cells. Finally, the two formulations at available in vivo concentrations did not block nitric oxide (NO) production from activated macrophage-like RAW264.7 cells stimulated with LPS, pam3CSK, or poly(I:C), nor did they alter the morphological changes of the activated macrophages. Taken together, our present work, as a comparative study of two different formulas of aripiprazole, suggests that these two formulas can be used to achieve similar functional activation of brain proteins related to cell survival and apoptosis and immunotoxicological activities of macrophages.

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • 제12권6호
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions

  • Yang, Yanyan;Lee, Jongsung;Rhee, Man Hee;Yu, Tao;Baek, Kwang-Soo;Sung, Nak Yoon;Kim, Yong;Yoon, Keejung;Kim, Ji Hye;Kwak, Yi-Seong;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.61-68
    • /
    • 2015
  • Background: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-${\alpha}$, and prostaglandin $E_2$], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).