• 제목/요약/키워드: $N^G$-nitro-L-arginine

검색결과 92건 처리시간 0.029초

흰쥐 대동맥에서 imipramine의 혈관이완 작용기전 (Mechanism of the relaxant action of imipramine in isolated rat aorta)

  • 강형섭;이상우;백성수;조성건;김진상
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.597-606
    • /
    • 2003
  • Although the antidepressant effects of imipramine (IMI) have been well known in several studies, the effects on cardiovascular system, particularly the vasorelaxant effects, have not known clearly. We hypothesis that IMI-induced vasorelaxation involves NO (nitrie oxide), activation of guanylate cyclase (GC) and $Ca^{2+}$ channel. The possible roles of the endothelium and $Ca^{2+}$ in IMI-induced responses were investigated using isolated rings of rat thoracic aorta and anesthesized rats. In KCl-precontracted rings. IMI produces endothelium-dependent and endothelium-independent relaxations in intact (+E) as well as endothelium-denuded (-E) rat aorta in a concentration-dependent manner. In phenylephrine (PE)-precontracted rings, the IMI-induced relaxation was significantly greater in +E rings. The IMI-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, a non-selective GC inhibitor, methylene blue, $Na^+$ channel blockers, lidocaine and procaine, or $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings, but not in PE-precontracted -E rings. These relaxations were also suppressed by lidocaine or procaine in -E aortic rings. However, IMI-induced relaxations were not inhibited by a PLC inhibitor 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC), an inositol monophosphatase inhibitor, lithium, indomethacin and dexamethasone in +E and -E rings. In vivo, infusion of IMI elicited significant decrease in arterial blood pressure. After intravenous injection of saponin, NOS inhibitors. MB and nifedipine, infusion of IMI inhibited the IMI-lowered blood pressure markedly. These findings suggest that the endothelium-dependent relaxation induced by IMI is mediated by activation of NO/cGMP signaling cascade or inhibition of $Ca^{2+}$ entry through voltage-gated channel, and this mechanism may contribute to the hypotensive effects of IMI in rats.

흰쥐 대동맥 수축에 대한 xylamine의 억제효과 (Inhibitory effects of xylamine on the arterial contraction in rats)

  • 김상진;강형섭;김진상
    • 대한수의학회지
    • /
    • 제44권3호
    • /
    • pp.389-397
    • /
    • 2004
  • The therapeutic efficacy of xylamine in the field of psychological medicine has been recognized for years and the drug is used to treat depression and some other conditions, but little is known about its mechanism of action on vascular system. Therefore, the present study was designed to investigate the influence of xylamine on the contractile responses of isolated rat thoracic arteries to phenylephrine(PE) and potassium chloride(KCl). Xylamine produced a concentration-dependent relaxation in PE-precontracted endothelium intact(+E) rat aortic rings, but not in a KCl-precontracted aortic rings. Also, xylamine inhibited the PE-induced contraction in concentration-dependent manner, but not in the high KCl-induced contraction in +E rings. This concentration-dependent inhibition was suppressed by the removal of the endothelium (-E). The inhibitory effects of xylamine($0.3{\mu}M$) on the PE-induced contractions were suppressed by N(G)-nitro-L-arginine(L-NNA), N(omega)-nitro-L-arginine methyl ester(L-NAME), aminoguanidine, dexamethasone, methylene blue, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one(ODQ), indomethacin, ryanodine, tetrabutylammonium(TBA), lidocaine, procaine and 0 mM extracellular $Na^+$, but not by 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate(NCDC), lithium, nifedipine, verapamil, 0 mM extracellular $Ca^{2+}$, glibenclamide and clotrimazole. These findings suggest that xylamine could act as a vasorelaxant and direct inhibitor of arterial contraction. This vasorelaxation involves an endothelial nitric oxide (NO)/cGMP (guanosine 3',5'-cyclic monophosphate) pathway or cyclooxygenase system, and an interference with $Ca^{2+}$ release, TBA-sensitive $Ca^{2+}$-activated $K^+$ channels and $Na^+$$ channels.

Purification and Characterization

  • Nam, Suk-Woo;Seo, Dong-Wan;Sung, Dae-Seok;Han, Jeung-Whan;Hong, Sung-Youl;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제21권2호
    • /
    • pp.128-134
    • /
    • 1998
  • Nitric oxide synthase, NOS (EC.1.14.13.39), was purified from bovine pancreas over 5,500-fold with a 7.6% yield using 30% ammonium sulfate precipitation, and $2^1$,$5^1$-ADP-agarose and calmodulin-agarose affinity chromatography. The purified bovine pancreatic NOS (bpNOS) showed a single band on SDS-PAGE corresponding to an apparent molecular mass of 160 kDa, whereas it was 320 kDa on non-denaturating gel-filtration. This indicated a homodimeric nature of the enzyme. The specific activity of the purified bpNOS was 31.67 nmol L-citrulline fored/mtn/mg protein and an apparent $K\textrm{m}$ for L-arginine was 15.72 $\mu\textrm{M}$, The enzyme activity was dependent on $Ca^{2+}$ and calmodulin, and to a lesser extent on NADPH, FAD and FMN. $H_4B$ was not required as a cofactor for the activity. In an inhibition experiment with L-arginine analogues, $N^G$-nitro-L-arginine (NNA) had the most potent inhibitory effect on bpNOS, and $N^{G}$, $N^{G1}$-dimethyl-L-arginine (symmetric; sDMA) did not have any inhibitory effect. Immunohistochemical analysis of the bovine pancreas using brain type NOS antibody (anti-bNOS antibody) revealed that acinar cells showed strong immunoreactivity against the antibody.

  • PDF

Regulatory Role of Nitric Oxide on Atrial Natriuretic Peptide System in Normotensive and Hypertensive Rats

  • Choi, Eun-Hah;Kim, Mi-Won;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.79-82
    • /
    • 1997
  • The present study was aimed to explore an interaction between endothelium-derived nitric oxide (NO) and atrial natriuretic peptide (ANP) systems in normotensive and hypertensive states. Rats were made two-kidney, one clip (2K1C) hypertensive and supplemented with either $N^G-nitro-L-arginine$ methyl ester (L-NAME, 5 mg/100 ml drinking water) or L-arginine hydrochloride (400 mg/100 ml drinking water). One group supplied with normal tap water served as control. Sham-clipped rats were also divided into the L-NAME, L-arginine, and control groups. The plasma levels and atrial contents of ANP were determined at day 28 following clipping the renal artery. In 2K1C rats, the plasma level of ANP was higher and the atrial content was lower than in the sham-clipped control. L-Arginine increased the atrial content of ANP in association with a decreased plasma ANP, whereas L-NAME significantly affected neither parameter. The increase of blood pressure in 2K1C rats was not affected by L-arginine or L-NAME. In sham-clipped rats, the plasma level of ANP was significantly increased by L-NAME along with an increase in blood pressure. On the contrary, L-arginine did not affect the blood pressure or plasma ANP. The atrial content of ANP was significantly altered neither by L-arginine nor by L-NAME. These results suggest that NO plays a tonic inhibitory role on the ANP release with concomitant increases of the atrial tissue content. In addition, hypertension is suggested to modify the release and tissue storage of ANP.

  • PDF

토끼 적출 신동맥에 있어서 acetylcholine에 의한 내피세포 의존성 이완작용에 대한 nitric oxide와 prostanoid의 연관성 (Involvement of nitric oxide and prostanoid on the endothelium -dependent vasodilatation by acetylcholine in the isolated rabbit renal artery)

  • 김주헌;심철수;전석철
    • 대한수의학회지
    • /
    • 제41권3호
    • /
    • pp.299-304
    • /
    • 2001
  • 토끼 적출 신동맥에 있어서 acetylcholin(Ach)에 의한 이완작용에 대한 nitric oxide(NO) 합성 억제제인 $N^{G}$-nitro-L-arginine methyl ester(L-NAME)과 prostanoid 합성 억제제인 indomethacin의 영향을 관찰하였다. Ach($10^{-8}-3{\times}10^{-5}M$)에 대한 이완작용은 내피세포를 제거시킴으로서 완전히 사라졌다. L-NAME ($10^{-4}M$)은 Ach ($10^{-8}-3{\times}10^{-5}M$)의 이완작용을 현저히 감소시켰으며 L-arginine ($10^{-3}M$)에 의해 Ach의 이완작용에 대한 L-NAME ($10^{-4}M$)의 억제효과가 현저히 약하게 나타났다. Indomethacin ($10^{-6}M$)은 Ach ($10^{-8}-3{\times}10^{-5}M$)의 이완작용에 영향을 미치지 못하였다. L-NAME ($10^{-4}M$)에 indomethacin ($10^{-6}M$)의 첨가는 Ach ($10^{-8}-3{\times}10^{-5}M$)의 이완작용이 L-NAME ($10^{-4}M$) 단독의 경우보다 더 큰 억제효과를 나타내었다. 이와 같은 결과로 토끼적출 신동맥에서 Ach은 내피세포 의존성 이완작용을 나타내며, NO와 prostanoid가 수반되어 나타나는 것으로 사료되어진다.

  • PDF

Mechanism of Relaxation of Rat Aorta by Scopoletin; an Active Constituent of Artemisia Capillaris

  • Kwon Eui Kwang;Jin Sang Sik;oChoi Min H;Hwang Kyung Taek;Shim Jin Chan;Hwang Il Taek;Han Jong Hyun
    • 동의생리병리학회지
    • /
    • 제16권2호
    • /
    • pp.389-396
    • /
    • 2002
  • In the present work, we examined the mechanism of vasorelaxant effect of scopoletin, an active constituent of Artemisia capillaris on rat thoracic descending aortic rings. Scopoletin induced a concentration-dependent relaxation in rat thoracic descending aortic rings pre-contracted with phenylephrine (EC/sub 50/ = 238.94±37.4 μM), while it was less effective in rat thoracic descending aortic rings precontracted with high potassium solution (KCI 30 mM). Vasorelaxation by scopoletin was significantly inhibited after endothelial removal, but recovered at high concentration. Pretreatment of rat thoracic descending aortic rings with N/sup G/-nitro-L-arginine (100 μM), a nitric oxide synthase inhibitor, and atropine (1 μM), a muscarinic receptor antagonist, significantly inhibited scopoletin-induced relaxation of rat thoracic descending aortic rings. Neither indomethacin (3 μM), an inhibitor of cydooxygenase, nor propranolol (1 μM), a β -adrenoceptor antagonist, modified the effect of scopoletin. The combination of N/sup G/ -nitro-L-arginine (100 μ M) and miconazole (10 μ M), an inhibitor of cytochrome P 450, did not modify the effect of scopoletin, when compared with pretreatment with N/sup G/-nitro-L-arginine(100 μM) alone. Vasorelaxant effect of scopoletin was inverted by pretreatment with diltiazem (10 μM), a Ca/sup 2+/-channel blocker, at low concentration, while restored at high concentration. Apamin (K/sub ca/-channel blocker, 1 μM), 4-aminopyridine (4-AP, K/sub v/-channel blocker, 1 mM), and tetrodotoxin (TTX, Na/sup +/-channel blocker 1 μM) potentiated the vasorelaxant effect of scopoledn, but glibendamide (K/sub ATP/-channel blocker, 10 μM), tetraetylammonium(TEA, non-selective K-channel blocker, 10 mM) did not affect the relaxation of scopoletin. Free radical scavengers (TEMPO, catalase, mannitol) did not modify vascular tone. These results suggest that nitric oxide, Ca/sup 2+/ -channels play a role in endothelium-dependent relaxations to scopoletin in rat aortas, that apamin, 4-AP, TTX but not glibenclamide, TEA potentiated relaxation to scopoletin mediated by these channels, and that free radicals do not concern to the vasorelaxant effect of scopoletin.

흰쥐 대동맥에서 fluoxetine의 혈관 이완 효과 (Vasorelaxant effect of fluoxetine in isolated rat aorta)

  • 김상진;강형섭;김진상
    • 대한수의학회지
    • /
    • 제44권4호
    • /
    • pp.515-522
    • /
    • 2004
  • The vasorelaxant effect of serotonin reuptake inhibitor fluoxetine was investigated in rat isolated thoracic aorta. Fluoxetine induced a concentration-dependent relaxation in aorta precontracted with phenylephrine (PE) and KCl. These relaxations were suppressed by removal of the endothelium (-E) or pretreatment of nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-Larginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue (MB) and 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ), and $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings. However, fluoxetine-induced relaxations were not suppressed by pretreatment of $K^{+}$ channel blockers, tetrabutylammonium and glibenclamide, in PE-precontracted endothelium intact (+E) rings. The fluoxetine-induced relaxations were not suppressed by removal of the endothelium or pretreatment of LNNA and MB in KCl-precontracted +E rings. Also, fluoxetine inhibited PE-induced sustained contraction in +E rings. These inhibitory effects of fluoxetine on contractions could be reversed by removal of the endothelium or pretreatment of L-NNA, L-NAME, MB, ODQ, nifedipine and verapamil, but not by pretreatment of etrabutylammonium and glibenclamide. These findings suggest that the vasorelaxant effect of fluoxetine is modulated by intracellular $Ca^{2+}$ with an involvement of endothelial NO-cGMP pathway and also may be related to the inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Nitroxergic Nerve Relaxes Rat Gastric Smooth Muscle by NO-cGMP Pathway

  • Yoon, Yoong-Sam;Choi, Hyoung-Chul;Jung, Young-Sook;Kim, Jong-Ho;Lee, Kwang-Youn;Sohn, Uy-Dong;Ha, Jeoung-Hee;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.369-378
    • /
    • 2000
  • This study was undertaken to investigate an involvement of nitroxergic innervation in gastric smooth muscle of rat. Isometric tension study, the measurement of single cell length, NADPH diaphorase stain of smooth muscle layers and neuronal nitric oxide synthase (nNOS) western blotting were performed. Sodium nitroprusside (SNP), a nitric oxide donor, relaxed the muscle strips precontracted by acetylcholine (ACh) in a concentration-dependent manner. Pretreatment of L-arginine decreased the contraction induced by electric field stimulation (EFS). Pretreatment of $N^G-nitro-L-arginine$ methyl ester (L-NAME), a NOS inhibitor, increased the EFS-induced contractions. LY 83583, a guanylate cyclase (GC) inhibitor, reversed the inhibitory actions of L-arginine on the muscle contractions. The effects of L-Arginine, L-NAME and LY 83583 on ACh-induced contractions were not significant. L-arginine reduced the EFS-induced contraction in circular muscle, whereas L-NAME enhanced the EFS-induced contraction in longitudinal strips. By EFS, the phasic contractions appeared approximately $20{\sim}25$ seconds later. L-NAME significantly shortened the delay time to about $2{\sim}3$ seconds. In single cell study, ACh contracted gastric smooth muscle cells, SNP relaxed the cells, and the latter also inhibited the ACh-induced contraction. LY 83583 enhanced the ACh-induced contraction and antagonized SNP-induced relaxation. NADPH diaphorase activity was assessed by a histochemistry, nitroblue tetrazolium (NTB) staining. Positive staining was observed in both circular and longitudinal muscle layers. L-arginine increased the staining, while L-NAME decreased the staining. Western blotting for nNOS proved the presence of nNOS in rat gastric smooth muscle. EFS and additional $Ca^{2+}$ increased nNOS protein expression. These results suggest that in rat stomach, both circular and longitudinal muscle layers are innervated with nitroxergic nerves which relax the gastric smooth muscle via NO-cGMP pathway.

  • PDF

흰쥐 대동맥에서 cyclic nucleotide phosphodiesterase 억제제들의 혈관 이완 특성 (Vasorelaxant properties of cyclic nucleotide phosphodiesterase inhibitors in rat aorta)

  • 강형섭;최철호;김진상
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.615-624
    • /
    • 2003
  • Vascular smooth muscle relaxation is modulated by an increase in cGMP subsequent to nitric oxide (NO) production by endothelial cells. The effects of cAMP and cGMP phosphodiesterase (PDE) inhibitors were investigated in phenylephrine-precontracted rat aorta rings by using the specific inhibitors of PDE I, III, IV and V as relaxing agents (calmodulin-activated PDE inhibitors, IBMX and $W_7$, type I; cAMP-specific PDE inhibitors, milrinone, type IV; Ro 20-1724, type III and cGMP-specific PDE inhibitor, zaprinast, type V). All the PDE inhibitors produced a concentration-dependent relaxation in the ring with intact endothelium (+E). Except for milrinone, all the PDE inhibitors-induced relaxations were inhibited by removal of extracellular $Ca^{2+}$, $N^G$-nitro-L-arginine, $N^G$-nitro-L-arginine methyl ester, methylene blue (MS) or nifedipine. The specific PDE I and PDE IV inhibitors both produced endothelium-independent relaxations which were inhibited by MS in -E rings. However, zaprinast had no effect in -E rings. Except for milrinone, sodium nitroprusside (a NO donor)-induced relaxation was significantly augmented by all PDE inhibitors in +E rings. The results suggest that I) the vasorelaxant properties of IBMX, $W_7$, Ro 20-1724 and zaprinast are dependent on endothelium or on interaction with $Ca^{2+}$ regulation, 2) each PDE is differently distributed in vascular tissues (endothelial and smooth muscle cells), 3) the vasodilations of PDE inhibitors are due to the increase of cAMP and cGMP formation through inhibition of cAMP- and cGMP-PDE and 4) the vasodilation action of milrinone does not involve in endothelial-cyclic nucleotide system.

개 하부식도괄약근의 비아드레날린성, 비콜린성 이완반응에 있어서 Cyclic Nucleotide의 역할 (Regulatory Role of Cyclic Nucleotides in Non-Adrenergic Non-Cholinergic Relaxation of Lower Esophageal Sphincter from Dogs)

  • 김영태;임병용
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권3호
    • /
    • pp.303-313
    • /
    • 1997
  • The role of the lower esophageal sphincter(LES) is characterized by the ability to maintain tone and to relax allowing the passage of a bolus. It is known that LES relaxation during swallowing may be induced by the cessation of the tonic neural excitation and the activation of non-adrenergic, non-cholinergic(NANC) inhibitory neurons. Furthermore, it is generally accepted that the relaxation of the smooth muscle is mediated primarily by the elaboration of adenosine 3',5'-cyclic monophosphate(cyclic AMP) and guanosine 3',5'-cyclic mono-phosphate(cyclic GMP) via activation of adenylate cyclase and guanylate cyclase, respectively. It is thus possible that cyclic nucleotides might be a second messenger involved in neural stimulation-induced relaxation of LES, although a relationship between relaxation and changes in cyclic nucleotides after neural stimulation has not been established. The present study was performed to define the participation of cyclic nucleotides in the relaxation of LES of dog in response to neural stimulation. Electrical field stimulation(EFS) caused relaxation of the canine isolated LES strips in a frequency-dependent manner, which was eliminated by pretreatment with tetrodotoxin$(1{\mu}M)$, but not by atropine$(100{\mu}M)$, guanethidine$(100{\mu}M)$ and indomethacin$(10{\mu}M)$. The nitric oxide synthase inhibitors, $N^G-nitro-L-arginine$, $N^G-nitro-L-arginine$ methyl ester and $N^G-monomethyl-L-arginine$ inhibited EFS-induced relaxation. Additions of sodium nitroprusside, a nitrovasodilator and forskolin, a direct adenylate cyclase stimulant, caused a dose-dependent relaxation of LES smooth muscle. Effects of sodium nitroprusside and forskolin were selectively blocked by the corresponding inhibitors, methylene blue for guanylate cyclase and N-ethylmaleimide(NEM) for adenylate cyclase, respectively. Dibutyryl cyclic AMP and dibutyryl cyclic GMP caused a concentration-dependent relaxation of the LES smooth muscle tone, which was not blocked by NEM or methylene blue, respectively. However, both NEM and methylene blue caused significant antagonism of the relaxation in LES tone in response to EFS. EFS increased the tissue cyclic GMP content by 124%, whereas it did not affect the tissue level of cyclic AMP. Based on these results, it is suggested that one of the components of canine LES smooth muscle relaxation in response to neural stimulation is mediated by an increase of cyclic GMP via the activation of guanylate cyclase. Additionally, an activation of cyclic AMP generation system was, in part, involved in the EFS-induced relaxation.

  • PDF