• Title/Summary/Keyword: $Moir\acute{e}$

Search Result 52, Processing Time 0.025 seconds

Assessment of the Breast-Firmming Effects of a Cosmetic Preparation with Moir$\acute{e}$ Tophography in Combination with 2D and 3D Digital Image Analyses (2D 및 3D 디지털 이미지 분석과 함께 Moir$\acute{e}$ Tophography 분석을 이용한 화장품의 가슴 탄력개선 효과 평가)

  • Seo, Young Kyoung;Yoo, Mi Ae;Ryu, Ja Hyun;Kim, So Jeong;Cho, Seong A;Nam, Gae Won;Cho, Jun-Cheol;Boo, Yong Chool;Koh, Jae-Sook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.289-296
    • /
    • 2012
  • Cosmetic products which might augment the breast have attracted an attention and objective methods for the evaluation of such products are in high demand. This study was conducted to establish a method for assessing the breast-firmming effects of cosmetics. This study included a total of 30 healthy Korean females aged 20-50 years. A cosmetic product was applied by massaging it onto the breast twice a day for 8 weeks. Measurement of breast girth with a tape ruler, 2D and 3D digital image analyses, and Moir$\acute{e}$ topographic analysis were performed before and following the treatment. The application of a cosmetic onto the breast significantly increased breast girth at 2, 4 and 8 weeks without a significant change in underbreast girth, implicating the breast might be augmented. The 2D image analysis indicated that the arc length of the breast which represents the surface distance from the nipple to the periphery of the under-breast was significantly increased at 2, 4 and 8 weeks. The height of the breast which represents the perpendicular distance from the nipple to the periphery of the under-breast was also increased significantly at 4 and 8 weeks. The 3D image analysis of body surface also demonstrated a significant increase of breast volume at 2, 4 and 8 weeks. Moir$\acute{e}$ topographic analysis indicated that breast sagging was significantly reduced at 2, 4 and 8 weeks. The results of this study suggest that Moir$\acute{e}$ topography in combination with 2D and 3D digital image analyses may be useful for evaluating the breast-augmenting effects of cosmetics.

A Study on MBES Error Data Removing using Motion Sensor (Motion Sensor를 이용한 MBES 오측자료 제거 연구)

  • Kang, Moon-Kwon;Choi, Yun-Soo;Chang, Min-Chol;Yoon, Ha-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Sounding data is the essential source for the safety of ships navigation system, and fundamental to the reasonable usage and maintenance of the ocean as well. As IT tech, positioning equipment such as GPS and INS, echo sounder are developed, recently, the precise submarine topography database bas been built by Multi-Beam Echo Sounder. However, MBES data includes some inevitable error caused by several factor, and some data have errors where the terrain is wobble. The error, which causes the $moir\acute{e}$ pattern error is the main factor hindering the accuracy of MBES data results, and therefore it is necessary to figure out the main cause of the error for the improvement of the accuracy by removing error data. On this research, the main cause of the error data is studied by analyzing motion sensor value of data including the $moir\acute{e}$ pattern error. Thus, as the result of examination, it turns out that the $moir\acute{e}$ pattern error is related to the standard deviation of Roll, and error data values are results of the non-correspondence between Swath data and Roll values caused by the drastic change of Roll values. Accordingly, the error data is removed by comparing between the gradient of Swath data and Roll values. Finally, as the result of removing error data, it is expected to be able to estimate the quality of MBES using the standard deviation of Motion sensor's Roll value, and calculate the additive error factor, which minimize non-corresponding data, and also this research must be contributed to improve the accuracy of sounding for small vessels with lots of motion in the bad circumstance for navigation.

Material Parameters Identification of Adhesive in Layered Plates Using Moiré Interferomety and Optimization Technique (무아레 간섭계 측정과 최적화 기법을 이용한 적층판의 접착제 물성치 규명)

  • Joo, Jin-Won;Kim, Han-Jun;Lee, Woo-Hyuk;Kim, Jin-Young;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1100-1107
    • /
    • 2007
  • In this study, a method to characterize material properties of adhesive that is used in a layered plates bonding process is developed by combined evaluation of experiment, simulation and optimization technique. A small bonded specimens of rectangular plate are prepared to this end, and put into a thermal loading conditions. $Moir{\acute{e}}$ interferomety is used to measure submicron displacements occurred during the process. The elevated temperature is chosen as control factors. FE analysis with constant values for the adhesive materials is also carried out to simulate the experiment. Significant differences are observed from the two results, in which the simulation predicts the monotonic increase of the bending displacement whereas the measurement shows decrease of the displacement at above $75^{\circ}C$. In order to minimize the difference of the two, material parameters of the adhesive at a number of different temperatures are posed as unknowns to be determined, and optimization is conducted. As a result, optimum material parameters are found that excellently matches the simulation and experiment, which are decreased with respect to the temperature.

Research on Subcutaneous Pulse Shape Measurement by Near-infrared Moiré Technique

  • Chen, Ying-Yun;Liu, Zhizhen;Du, Jian;Chang, Rong-Seng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • A pulse is generated when the heart pumps blood into the arterial system. The heart pumps blood only when it contracts, not when it relaxes; therefore, blood enters the arterial system in a cyclical form. Artery beating is visible in some parts of the body surface, such as the radial artery of the wrist. This paper mainly uses the feature in which near-infrared spectroscopy penetrates skin to construct a non-invasive measurement system that can measure small vibration in the subcutaneous tissue of the human body, and then uses it for the pulse measurement. This measurement system uses the optical moir$\acute{e}$ principle, together with the fringe displacement made by small vibration in the subcutaneous tissue, and an image analysis program to calculate the height variation from small vibrations in the subcutaneous tissue. It completes a measurement system that records height variation with time, and that together with a fast Fourier transform (FFT) program, they can convert the pulse waveform generated by vibration (time-amplitude) to heartbeat frequency (frequency-amplitude). This is a new and non-invasive medical assistance system for measuring the pulse of the human body, with the advantages of being simple, fast, safe and objective.

Local Electronic Structures of Graphene Probed by Scanning Tunneling Spectroscopy

  • Jang, Won-Jun;Lee, Eui-Sup;Kim, Howon;Yoon, JongKeon;Chang, Yunhee;Kim, Yong-Hyun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.132.2-132.2
    • /
    • 2013
  • Electrons in graphene make ballistic transport with very high mobility (${\sim}2{\times}105 $cm2V-1s-1), which holds promises for applications in fast electronic devices. However, such expectations have been hampered by the semi-metallicity or zero bandgap of graphene, which makes it impossible to completely turn off graphene transistor devices. Here, we report the observations of local bandgap modulations in Moir$\acute{e}$ patterned graphene on metal substrates using scanning tunneling microscopy and spectroscopy. The Moir$\acute{e}$ patterned graphene was made by combinations of self-assembly processes, and they showed additional electronic states that could be interpreted as sub-band states. Our experimental observations could be explained with orbital transitions of carbon atoms from sp2 to sp3, as supported by our density functional theory calculation results. Our findings will add new poweful components for device applications.

  • PDF

Stationary and Moving Computed Radiography Grids : Comparative Observer's Perception (Computed Radiography에서 고정형 그리드와 이동형 그리드 영상의 인식률 비교)

  • Lee, Kiho;Lee, Changhoon;Jin, Gyehwan
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.515-521
    • /
    • 2015
  • This study assessed the degradation of image quality caused by grid artifacts and $moir{\acute{e}}$ pattern artifacts in a stationary grid, and the degradation of image quality caused by cut off artifacts in a moving grid. X-ray images were acquired in a stationary grid and a moving grid with X-ray exposure conditions of 100 cm, 80 kVp, and 30 mA using a CDRAD phantom and a 24 cm thickness acrylic phantom. Observer's perception of X-ray imaging using CDRAD Analyzer was mean 49.36, standard deviation 3.76, maximum 55.56, and minimum 38.67 in the stationary grid, and 47.04, 12.69, 55.56, and 20.89, respectively, in the moving grid. The stationary grid was superior to the moving grid in terms of the mean and standard deviation of observer's perception.

Analysis of a Complete Contact Problem in Bonded Condition: Comparison of Experimental-Numerical Analyses and Theoretical Solutions (응착조건의 완전접촉문제 해석: 실험 및 수치해석과 이론해의 비교)

  • Kim, Hyung-Kyu;Jang, Jae-Won;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Asymptotic method has been often used to theoretically analyze the complete contact problem. The error of the asymptotic results increases as the distance from the contact edge increases. The singularity cannot be properly obtained from a finite element (FE) analysis owing to the finiteness of the element size. In the present work, the complete contact problem in bonded condition is analyzed using a combined experimental-numerical approach to assist and/or compare with the asymptotic results. Al and Cu alloys are used for the material combination of the punch and substrate. 120 and 135 degrees are used for the punch angle. The FE models are validated by comparison of displacement distributions obtained by the FE analysis and $moir{\acute{e}}$ experiment. Generalized stress intensity factors are evaluated using the validated FE models. Stress field in the vicinity of the sharp contact edges obtained from the FE and asymptotic analyses are compared. The discrepancies are also discussed.

Assessment of Viscoplastic Deformation Behavior of Eutectic Solder and Lead-free Solder (유연 솔더와 무연 솔더의 점소성 변형거동 평가)

  • Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.17-27
    • /
    • 2011
  • This paper describes an experimental study and finite element analysis (FEA) carried out for investigating thermal deformation behavior of solders, resulting from temperature change in the solder. With such a goal in mind, a shear specimen that was composed of two metal bars having different coefficient of thermal expansion and solder blocks placed between two bars was designed and fabricated. Two different types of solder blocks, eutectic solder (Sn/36Pb/ 2Ag) and lead-free solder (Sn/3.0Ag/0.5Cu) were tested as well. Fringe patterns for several temperature steps were recorded and analyzed for three temperature cycles using a real-time moir$\acute{e}$ setup. The experimental data was verified with FEA and used to evaluate the suitability for numerous solder constitutive models available in literatures. FEA employing Anand material model suggested by Darveaux et al. and Chang et al. were found to be in an excellent agreement with the experimental results for the eutectic solder and the lead-free solder, respectively. In addition, numerical predictions on bending displacement, shear strain and viscoplastic distortion energy are documented and viscoplastic deformation behavior of two types of solder material are compared.

Atomic Resolution Imaging of Rotated Bilayer Graphene Sheets Using a Low kV Aberration-corrected Transmission Electron Microscope

  • Ryu, Gyeong Hee;Park, Hyo Ju;Kim, Na Yeon;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.218-222
    • /
    • 2012
  • Modern aberration-corrected transmission electron microscope (TEM) with appropriate electron beam energy is able to achieve atomic resolution imaging of single and bilayer graphene sheets. Especially, atomic configuration of bilayer graphene with a rotation angle can be identified from the direct imaging and phase reconstructed imaging since atomic resolution Moir$\acute{e}$ pattern can be obtained successfully at atomic scale using an aberration-corrected TEM. This study boosts a reliable stacking order analysis, which is required for synthesized or artificially prepared multilayer graphene, and lets graphene researchers utilize the information of atomic configuration of stacked graphene layers readily.

Optimized Optomechanical Anti-Aliasing Filter for Digital Camera Photography

  • Lee, Sang Won;Chang, Ryungkee;Moon, Sucbei
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.456-466
    • /
    • 2015
  • We investigated an anti-aliasing (AA) filter for digital camera photography by which the excessively high-frequency components of the image signal are suppressed to avoid the aliasing effect. Our optomechanical AA filter was implemented by applying rapid relative motions to the imaging sensor. By the engineered motion blur of the mechanical dithers, the effective point-spread function (PSF) of the imaging system could be tailored to reject the unwanted high-frequency components of the image. For optimal operations, we developed a spiral filter motion protocol that could produce a Gaussian-like PSF. We experimentally demonstrated that our AA filter provides an improved filtering characteristic with a better compromise of the rejection performance and the signal loss. We also found that the pass band characteristic can be enhanced further by a color-differential acquisition mode. Our filter scheme provides a useful method of digital photography for low-error image measurements as well as for ordinary photographic applications where annoying $moir{\acute{e}}$ patterns must be suppressed efficiently.